Note on Design Criteria for Rainbow-Type Multivariates

This was a short note that deals with the design of Rainbow or “stagewise unbalanced oil-and-vinegar” multivariate signature schemes. We exhibit new cryptanalysis for current schemes that relates to flawed choices of system parameters in current schemes. These can be ameliorated according to an updated list of security design criteria.

[1]  Louis Goubin,et al.  Unbalanced Oil and Vinegar Signature Schemes , 1999, EUROCRYPT.

[2]  Feipei Lai,et al.  Tractable Rational Map Signature , 2005, Public Key Cryptography.

[3]  Ariel Shamir,et al.  Cryptanalysis of the oil and vinegar signature scheme , 1998 .

[4]  Louis Goubin,et al.  Cryptanalysis of the TTM Cryptosystem , 2000, ASIACRYPT.

[5]  Jean-Charles Faugère Algebraic cryptanalysis of HFE using Gröbner bases , 2002 .

[6]  Olivier Billet,et al.  Cryptanalysis of Rainbow , 2006, SCN.

[7]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[8]  Jean-Charles Faugère,et al.  Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects , 2006, EUROCRYPT.

[9]  Jacques Stern,et al.  The security of the birational permutation signature schemes , 1997, Journal of Cryptology.

[10]  Bo-Yin Yang,et al.  Building Secure Tame-like Multivariate Public-Key Cryptosystems: The New TTS , 2005, ACISP.

[11]  Chen Liqun,et al.  Public Key Cryptography - PKC 2005 , 2005 .

[12]  Jintai Ding,et al.  Rainbow, a New Multivariable Polynomial Signature Scheme , 2005, ACNS.

[13]  Bo-Yin Yang,et al.  All in the XL Family: Theory and Practice , 2004, ICISC.

[14]  Bo-Yin Yang,et al.  On Asymptotic Security Estimates in XL and Gröbner Bases-Related Algebraic Cryptanalysis , 2004, ICICS.

[15]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[16]  Thomas Beth,et al.  Attacking the Affine Parts of SFLASH , 2001, IMACC.

[17]  J. Faugère,et al.  On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations , 2004 .

[18]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[19]  Antoine Joux,et al.  Cryptanalysis of the Tractable Rational Map Cryptosystem , 2005, Public Key Cryptography.