Transition to chaos for area-preserving maps

[1]  Robert S. MacKay,et al.  Boundary circles for area-preserving maps , 1986 .

[2]  I. C. Percival,et al.  Converse KAM: Theory and practice , 1985 .

[3]  B. Mestel A computer assisted proof of universality for cubic critical maps of the circle with Golden Mean rotation number , 1985 .

[4]  Farmer,et al.  Fat fractals on the energy surface. , 1985, Physical review letters.

[5]  James D. Meiss,et al.  Algebraic decay in self-similar Markov chains , 1985 .

[6]  Farmer,et al.  Renormalization of the quasiperiodic transition to chaos for arbitrary winding numbers. , 1985, Physical review. A, General physics.

[7]  D. Escande Stochasticity in classical Hamiltonian systems: Universal aspects , 1985 .

[8]  R. MacKay,et al.  An approximation to the critical commuting pair for breakup of noble tori , 1985 .

[9]  R. MacKay Equivariant universality classes , 1984 .

[10]  L. Kadanoff,et al.  Extended chaos and disappearance of KAM trajectories , 1984 .

[11]  J. Mather Non-existence of invariant circles , 1984, Ergodic Theory and Dynamical Systems.

[12]  S. Aubry,et al.  The discrete Frenkel-Kontorova model and its extensions: I. Exact results for the ground-states , 1983 .

[13]  S. Aubry The twist map, the extended Frenkel-Kontorova model and the devil's staircase , 1983 .

[14]  R. MacKay A renormalization approach to invariant circles in area-preserving maps , 1983 .

[15]  Michel Peyrard,et al.  Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel-Kontorova model , 1983 .

[16]  J. Sethna,et al.  Universal Transition from Quasiperiodicity to Chaos in Dissipative Systems , 1982 .

[17]  S. Shenker,et al.  Critical behavior of a KAM surface: I. Empirical results , 1982 .

[18]  Dominique Escande,et al.  Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems , 1981 .

[19]  I. Percival,et al.  Hamiltonian maps in the complex plane , 1981 .

[20]  G. Schmidt Stochasticity and fixed-point transitions , 1980 .

[21]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[22]  R. Helleman Variational solutions of non‐integrable systems , 1978 .

[23]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[24]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[25]  E. Zehnder Homoclinic points near elliptic fixed points , 1973 .

[26]  R. Robinson,et al.  GENERIC PROPERTIES OF CONSERVATIVE SYSTEMS. , 1970 .

[27]  J. M. Greene Two‐Dimensional Measure‐Preserving Mappings , 1968 .

[28]  S. Smale Differentiable dynamical systems , 1967 .

[29]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[30]  Eugene P. Wigner,et al.  Calculation of the Rate of Elementary Association Reactions , 1937 .

[31]  George D. Birkhoff,et al.  Surface transformations and their dynamical applications , 1922 .

[32]  Henri Poincaré,et al.  Sur un théorème de géométrie , 1912 .

[33]  G. R. Hall,et al.  Invariant circles and the order structure of periodic orbits in monotone twist maps , 1987 .

[34]  M. R. Herman,et al.  Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .

[35]  Helmut Rüssmann,et al.  On the existence of invariant curves of twist mappings of an annulus , 1983 .

[36]  J. Mather,et al.  Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .

[37]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[38]  G. D. Birkhoff Sur quelques courbes fermées remarquables , 1932 .

[39]  M. R. Marcelin,et al.  Contribution à l'étude de la cinétique physico-chimique , 1915 .

[40]  George D. Birkhoff,et al.  Proof of Poincaré’s geometric theorem , 1913 .

[41]  H. Poincaré,et al.  Sur les courbes définies par les équations différentielles(III) , 1885 .