Transition to chaos for area-preserving maps
暂无分享,去创建一个
[1] Robert S. MacKay,et al. Boundary circles for area-preserving maps , 1986 .
[2] I. C. Percival,et al. Converse KAM: Theory and practice , 1985 .
[3] B. Mestel. A computer assisted proof of universality for cubic critical maps of the circle with Golden Mean rotation number , 1985 .
[4] Farmer,et al. Fat fractals on the energy surface. , 1985, Physical review letters.
[5] James D. Meiss,et al. Algebraic decay in self-similar Markov chains , 1985 .
[6] Farmer,et al. Renormalization of the quasiperiodic transition to chaos for arbitrary winding numbers. , 1985, Physical review. A, General physics.
[7] D. Escande. Stochasticity in classical Hamiltonian systems: Universal aspects , 1985 .
[8] R. MacKay,et al. An approximation to the critical commuting pair for breakup of noble tori , 1985 .
[9] R. MacKay. Equivariant universality classes , 1984 .
[10] L. Kadanoff,et al. Extended chaos and disappearance of KAM trajectories , 1984 .
[11] J. Mather. Non-existence of invariant circles , 1984, Ergodic Theory and Dynamical Systems.
[12] S. Aubry,et al. The discrete Frenkel-Kontorova model and its extensions: I. Exact results for the ground-states , 1983 .
[13] S. Aubry. The twist map, the extended Frenkel-Kontorova model and the devil's staircase , 1983 .
[14] R. MacKay. A renormalization approach to invariant circles in area-preserving maps , 1983 .
[15] Michel Peyrard,et al. Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel-Kontorova model , 1983 .
[16] J. Sethna,et al. Universal Transition from Quasiperiodicity to Chaos in Dissipative Systems , 1982 .
[17] S. Shenker,et al. Critical behavior of a KAM surface: I. Empirical results , 1982 .
[18] Dominique Escande,et al. Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems , 1981 .
[19] I. Percival,et al. Hamiltonian maps in the complex plane , 1981 .
[20] G. Schmidt. Stochasticity and fixed-point transitions , 1980 .
[21] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[22] R. Helleman. Variational solutions of non‐integrable systems , 1978 .
[23] Y. Pesin. CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .
[24] D. Saari,et al. Stable and Random Motions in Dynamical Systems , 1975 .
[25] E. Zehnder. Homoclinic points near elliptic fixed points , 1973 .
[26] R. Robinson,et al. GENERIC PROPERTIES OF CONSERVATIVE SYSTEMS. , 1970 .
[27] J. M. Greene. Two‐Dimensional Measure‐Preserving Mappings , 1968 .
[28] S. Smale. Differentiable dynamical systems , 1967 .
[29] V. I. Arnol'd,et al. PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .
[30] Eugene P. Wigner,et al. Calculation of the Rate of Elementary Association Reactions , 1937 .
[31] George D. Birkhoff,et al. Surface transformations and their dynamical applications , 1922 .
[32] Henri Poincaré,et al. Sur un théorème de géométrie , 1912 .
[33] G. R. Hall,et al. Invariant circles and the order structure of periodic orbits in monotone twist maps , 1987 .
[34] M. R. Herman,et al. Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .
[35] Helmut Rüssmann,et al. On the existence of invariant curves of twist mappings of an annulus , 1983 .
[36] J. Mather,et al. Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .
[37] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[38] G. D. Birkhoff. Sur quelques courbes fermées remarquables , 1932 .
[39] M. R. Marcelin,et al. Contribution à l'étude de la cinétique physico-chimique , 1915 .
[40] George D. Birkhoff,et al. Proof of Poincaré’s geometric theorem , 1913 .
[41] H. Poincaré,et al. Sur les courbes définies par les équations différentielles(III) , 1885 .