Adaptive Optics Retinal Imaging – Clinical Opportunities and Challenges

Abstract The array of therapeutic options available to clinicians for treating retinal disease is expanding. With these advances comes the need for better understanding of the etiology of these diseases on a cellular level as well as improved non-invasive tools for identifying the best candidates for given therapies and monitoring the efficacy of those therapies. While spectral domain optical coherence tomography offers a widely available tool for clinicians to assay the living retina, it suffers from poor lateral resolution due to the eye’s monochromatic aberrations. Ophthalmic adaptive optics (AO) is a technique to compensate for the eye’s aberrations and provide nearly diffraction-limited resolution. The result is the ability to visualize the living retina with cellular resolution. While AO is unquestionably a powerful research tool, many clinicians remain undecided on the clinical potential of AO imaging – putting many at a crossroads with respect to adoption of this technology. This review will briefly summarize the current state of AO retinal imaging, discuss current as well as future clinical applications of AO retinal imaging, and finally provide some discussion of research needs to facilitate more widespread clinical use.

[1]  Vaegan,et al.  Swelling and loss of photoreceptors in chronic human and experimental glaucomas. , 2000, Archives of ophthalmology.

[2]  R S Sobel,et al.  Fluorescein angiography complication survey. , 1986, Ophthalmology.

[3]  David Williams,et al.  The effect of cone opsin mutations on retinal structure and the integrity of the photoreceptor mosaic. , 2012, Investigative ophthalmology & visual science.

[4]  Jennifer J. Hunter,et al.  Imaging retinal mosaics in the living eye , 2011, Eye.

[5]  A. Dubra,et al.  Outer retinal structure in best vitelliform macular dystrophy. , 2013, JAMA ophthalmology.

[6]  Jungtae Rha,et al.  Imaging the photoreceptor mosaic with adaptive optics: beyond counting cones. , 2012, Advances in experimental medicine and biology.

[7]  Ashavini M. Pavaskar,et al.  Spatial and temporal variation of rod photoreceptor reflectance in the human retina , 2011, Biomedical optics express.

[8]  J. Ambati,et al.  Mechanisms of Age-Related Macular Degeneration , 2012, Neuron.

[9]  David Williams,et al.  Deletion of the X-linked opsin gene array locus control region (LCR) results in disruption of the cone mosaic , 2010, Vision Research.

[10]  Livia S. Carvalho,et al.  Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy , 2011, Human molecular genetics.

[11]  John S Werner,et al.  In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function. , 2006, Investigative ophthalmology & visual science.

[12]  A. Roorda,et al.  Heterogeneous patterns of tissue injury in NARP syndrome , 2010, Journal of Neurology.

[13]  Donald T. Miller,et al.  Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. , 2005, Optics express.

[14]  A. Roorda,et al.  Cone structure in patients with usher syndrome type III and mutations in the Clarin 1 gene. , 2013, JAMA ophthalmology.

[15]  T. Kern,et al.  Vascular lesions in diabetes are distributed non-uniformly within the retina. , 1995, Experimental eye research.

[16]  A. Dubra,et al.  Subclinical photoreceptor disruption in response to severe head trauma. , 2012, Archives of ophthalmology.

[17]  A. Tsujikawa,et al.  High-resolution photoreceptor imaging in idiopathic macular telangiectasia type 2 using adaptive optics scanning laser ophthalmoscopy. , 2011, Investigative ophthalmology & visual science.

[18]  Austin Roorda,et al.  Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene. , 2011, Investigative ophthalmology & visual science.

[19]  Jessica I. W. Morgan,et al.  The reduction of retinal autofluorescence caused by light exposure. , 2009, Investigative ophthalmology & visual science.

[20]  J L Keltner,et al.  Outer retinal abnormalities associated with inner retinal pathology in nonglaucomatous and glaucomatous optic neuropathies , 2011, Eye.

[21]  Mohit Chopra,et al.  Pathophysiology of Diabetic Retinopathy , 2013, ISRN ophthalmology.

[22]  Joseph Carroll,et al.  Rhodopsin F45L Allele Does Not Cause Autosomal Dominant Retinitis Pigmentosa in a Large Caucasian Family. , 2013, Translational vision science & technology.

[23]  D. M. Tait,et al.  Unusual adaptive optics findings in a patient with bilateral maculopathy. , 2010, Archives of ophthalmology.

[24]  W. Drexler,et al.  Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. , 2009, Optics express.

[25]  Barry Cense,et al.  Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics. , 2011, Investigative ophthalmology & visual science.

[26]  Jungtae Rha,et al.  Integrity of the cone photoreceptor mosaic in oligocone trichromacy. , 2011, Investigative ophthalmology & visual science.

[27]  Barbara Lamory,et al.  In vivo evaluation of photoreceptor mosaic in type 2 idiopathic macular telangiectasia using adaptive optics , 2011, Acta ophthalmologica.

[28]  Toco Y P Chui,et al.  Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels. , 2011, Investigative ophthalmology & visual science.

[29]  Steven M. Jones,et al.  Retinal imaging with adaptive optics scanning laser ophthalmoscopy in unexplained central ring scotoma. , 2008, Archives of ophthalmology.

[30]  Christopher S. Langlo,et al.  Repeatability of In Vivo Parafoveal Cone Density and Spacing Measurements , 2012, Optometry and vision science : official publication of the American Academy of Optometry.

[31]  Kaccie Y. Li,et al.  Intersubject variability of foveal cone photoreceptor density in relation to eye length. , 2010, Investigative ophthalmology & visual science.

[32]  Mette Owner-Petersen,et al.  Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics. , 2011, Investigative ophthalmology & visual science.

[33]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[34]  T. Gardner,et al.  Retinal neurodegeneration: early pathology in diabetes , 2000, Clinical & experimental ophthalmology.

[35]  Ravi S. Jonnal,et al.  Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics , 2011, Vision Research.

[36]  Chi-Chao Chan,et al.  Molecular pathology of age-related macular degeneration , 2009, Progress in Retinal and Eye Research.

[37]  David Williams,et al.  Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[38]  Jennifer K. Sun,et al.  Photoreceptor Mosaic Changes in Diabetic Eye Disease Assessed by Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO) , 2012 .

[39]  Alfredo Dubra,et al.  SELECTIVE CONE PHOTORECEPTOR INJURY IN ACUTE MACULAR NEURORETINOPATHY , 2013, Retina.

[40]  M. Schneck,et al.  A multifocal electroretinogram model predicting the development of diabetic retinopathy , 2006, Progress in Retinal and Eye Research.

[41]  A. Dubra,et al.  Photoreceptor structure and function in patients with congenital achromatopsia. , 2011, Investigative ophthalmology & visual science.

[42]  D McLeod,et al.  Three dimensional analysis of microaneurysms in the human diabetic retina , 1999, Journal of anatomy.

[43]  Takashi Fujikado,et al.  Detection of photoreceptor disruption by adaptive optics fundus imaging and Fourier-domain optical coherence tomography in eyes with occult macular dystrophy , 2011, Clinical ophthalmology.

[44]  Dennis P. Han,et al.  Spectral-domain optical coherence tomography and adaptive optics may detect hydroxychloroquine retinal toxicity before symptomatic vision loss. , 2009, Transactions of the American Ophthalmological Society.

[45]  A Roorda,et al.  Advances in imaging of Stargardt disease. , 2010, Advances in experimental medicine and biology.

[46]  Daniel X Hammer,et al.  Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[47]  K. Takayama,et al.  High-Resolution Imaging of the Retinal Nerve Fiber Layer in Normal Eyes Using Adaptive Optics Scanning Laser Ophthalmoscopy , 2012, PloS one.

[48]  G. M. Morris,et al.  Images of cone photoreceptors in the living human eye , 1996, Vision Research.

[49]  Yiming Huang,et al.  Stem Cell-Based Therapeutic Applications in Retinal Degenerative Diseases , 2011, Stem Cell Reviews and Reports.

[50]  A. Tsujikawa,et al.  High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy. , 2010, Ophthalmology.

[51]  Austin Roorda,et al.  Adaptive optics scanning laser ophthalmoscopy images in a family with the mitochondrial DNA T8993C mutation. , 2009, Investigative ophthalmology & visual science.

[52]  Donald T. Miller,et al.  Imaging outer segment renewal in living human cone photoreceptors. , 2010, Optics express.

[53]  Jessica I. W. Morgan,et al.  Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium. , 2008, Investigative ophthalmology & visual science.

[54]  T. Scully Diabetes in numbers , 2012, Nature.

[55]  Masaaki Hanebuchi,et al.  High-resolution imaging of retinal nerve fiber bundles in glaucoma using adaptive optics scanning laser ophthalmoscopy. , 2013, American journal of ophthalmology.

[56]  Nicholas Devaney,et al.  Adaptive Optics Technology for High-Resolution Retinal Imaging , 2012, Sensors.

[57]  F. Medeiros,et al.  Assessment of rates of structural change in glaucoma using imaging technologies , 2011, Eye.

[58]  Austin Roorda,et al.  Identification of a novel mutation in the CDHR1 gene in a family with recessive retinal degeneration. , 2012, Archives of ophthalmology.

[59]  David Williams,et al.  Color-deficient cone mosaics associated with Xq28 opsin mutations: A stop codon versus gene deletions , 2010, Vision Research.

[60]  Salvatore Grisanti,et al.  The role of vascular endothelial growth factor and other endogenous interplayers in age-related macular degeneration , 2008, Progress in Retinal and Eye Research.

[61]  Maureen Neitz,et al.  Assessing retinal structure in complete congenital stationary night blindness and Oguchi disease. , 2012, American journal of ophthalmology.

[62]  R. Raman,et al.  Is neuronal dysfunction an early sign of diabetic retinopathy? Microperimetry and Spectral Domain Optical Coherence Tomography (SD-OCT) Study in individuals with diabetes, but no diabetic retinopathy , 2009, Eye.

[63]  Masanori Hangai,et al.  In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy. , 2012, Investigative ophthalmology & visual science.

[64]  Jungtae Rha,et al.  Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT. , 2010, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[65]  Takashi Fujikado,et al.  Adaptive optics fundus camera to examine localized changes in the photoreceptor layer of the fovea. , 2008, Ophthalmology.

[66]  Elise W. Dees,et al.  Variability in parafoveal cone mosaic in normal trichromatic individuals , 2011, Biomedical optics express.

[67]  A. Dubra,et al.  Reflective afocal broadband adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[68]  J. Sahel,et al.  Topography of Patchy Retinal Whitening during Acute Perfused Retinal Vein Occlusion by Optical Coherence Tomography and Adaptive Optics Fundus Imaging , 2011, European journal of ophthalmology.

[69]  Sofia Fernandes,et al.  Avoidable sight loss from glaucoma: is it unavoidable? , 2012, British Journal of Ophthalmology.

[70]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[71]  Katherine E. Talcott,et al.  Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. , 2011, Investigative ophthalmology & visual science.

[72]  E. Fletcher,et al.  Dysfunction of retinal neurons and glia during diabetes , 2005, Clinical & experimental optometry.

[73]  E. Fletcher Mechanisms of Photoreceptor Death During Retinal Degeneration , 2009, Optometry and vision science : official publication of the American Academy of Optometry.

[74]  Nicola Bonora,et al.  Primary blast injury to the eye and orbit: finite element modeling. , 2012, Investigative ophthalmology & visual science.

[75]  E. Stone Progress toward effective treatments for human photoreceptor degenerations. , 2009, Current opinion in genetics & development.

[76]  Larry N. Thibos,et al.  The mechanisms of vision loss associated with a cotton wool spot , 2009, Vision Research.

[77]  Adam Boretsky,et al.  In vivo imaging of photoreceptor disruption associated with age‐related macular degeneration: A pilot study , 2012, Lasers in surgery and medicine.

[78]  Robert N Weinreb,et al.  A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. , 2010, Investigative ophthalmology & visual science.

[79]  A. Swaroop,et al.  High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. , 2007, Investigative ophthalmology & visual science.

[80]  Daniel X Hammer,et al.  Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study. , 2008, Investigative ophthalmology & visual science.

[81]  Austin Roorda,et al.  Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[82]  Austin Roorda,et al.  Cone structure in retinal degeneration associated with mutations in the peripherin/RDS gene. , 2011, Investigative ophthalmology & visual science.

[83]  Chaohong Li,et al.  Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging. , 2011, Investigative ophthalmology & visual science.

[84]  Stephen A Burns,et al.  Individual variations in human cone photoreceptor packing density: variations with refractive error. , 2008, Investigative ophthalmology & visual science.

[85]  David Williams,et al.  Photoreceptor and RPE Disruptions Observed Outside Clinically Visible Geographic Atrophy Lesions in the Living Eye with Fluorescence Adaptive Optics Scanning Laser Ophthalmoscopy (FAOSLO) , 2012 .

[86]  Robert J Zawadzki,et al.  Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies. , 2008, Investigative ophthalmology & visual science.

[87]  David R Williams,et al.  In-vivo imaging of retinal nerve fiber layer vasculature: imaging - histology comparison , 2009, BMC ophthalmology.

[88]  Phillip Bedggood,et al.  Variability in bleach kinetics and amount of photopigment between individual foveal cones. , 2012, Investigative ophthalmology & visual science.

[89]  Bernd Hamann,et al.  Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography. , 2009, Optics express.

[90]  David Williams,et al.  In vivo imaging of the photoreceptor mosaic of a rod monochromat , 2008, Vision Research.

[91]  B. Lujan,et al.  Cone photoreceptor abnormalities correlate with vision loss in patients with Stargardt disease. , 2011, Investigative ophthalmology & visual science.

[92]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[93]  R. Zawadzki,et al.  Microstructural Abnormalities Revealed by High Resolution Imaging Systems in Central Macular Arteriovenous Malformation. , 2010, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[94]  D. M. Tait,et al.  Spectral domain optical coherence tomography and adaptive optics: imaging photoreceptor layer morphology to interpret preclinical phenotypes. , 2010, Advances in experimental medicine and biology.

[95]  Milan Sonka,et al.  Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. , 2009, Investigative ophthalmology & visual science.

[96]  Stephen A. Burns,et al.  Foveal Avascular Zone and Its Relationship to Foveal Pit Shape , 2012, Optometry and vision science : official publication of the American Academy of Optometry.

[97]  András M Komáromy,et al.  Gene therapy rescues cone function in congenital achromatopsia. , 2010, Human molecular genetics.

[98]  Jessica I. W. Morgan,et al.  In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. , 2009, Investigative ophthalmology & visual science.

[99]  M. Stirpe,et al.  INTEROCULAR SYMMETRY OF PARAFOVEAL PHOTORECEPTOR CONE DENSITY DISTRIBUTION , 2013, Retina.

[100]  J. Jonas,et al.  Decreased photoreceptor count in human eyes with secondary angle-closure glaucoma. , 1992, Investigative ophthalmology & visual science.

[101]  David Williams,et al.  Retinal crystals in type 2 idiopathic macular telangiectasia. , 2010, Ophthalmology.

[102]  Toco Y P Chui,et al.  Variation of cone photoreceptor packing density with retinal eccentricity and age. , 2011, Investigative ophthalmology & visual science.

[103]  Masanori Hangai,et al.  High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy. , 2011, Ophthalmology.

[104]  Austin Roorda,et al.  Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. , 2011, Investigative ophthalmology & visual science.

[105]  Austin Roorda,et al.  Pulsatility of parafoveal capillary leukocytes. , 2009, Experimental eye research.

[106]  Gang Huang,et al.  A Clinical Planning Module for Adaptive Optics SLO Imaging , 2012, Optometry and vision science : official publication of the American Academy of Optometry.

[107]  Julia S. Kroisamer,et al.  Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT , 2010, Biomedical optics express.

[108]  Marco Lombardo,et al.  In Vivo Investigation of the Retinal Microscopy in Patients with Type 1 Diabetes Mellitus , 2012 .

[109]  Robert J Zawadzki,et al.  Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging , 2010, British Journal of Ophthalmology.

[110]  David Williams,et al.  Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Austin Roorda,et al.  Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[112]  S. Ooto,et al.  Photoreceptor restoration in unilateral acute idiopathic maculopathy on adaptive optics scanning laser ophthalmoscopy. , 2011, Archives of ophthalmology.

[113]  A. Barber,et al.  A new view of diabetic retinopathy: a neurodegenerative disease of the eye , 2003, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[114]  W. Hauswirth,et al.  Restoration of cone vision in a mouse model of achromatopsia , 2007, Nature Medicine.

[115]  John Conrath,et al.  Foveal damage in habitual poppers users. , 2011, Archives of ophthalmology.

[116]  T. Mihashi,et al.  In Vivo Measurements of Cone Photoreceptor Spacing in Myopic Eyes from Images Obtained by an Adaptive Optics Fundus Camera , 2007, Japanese Journal of Ophthalmology.

[117]  C. Westall,et al.  Phenotypic characteristics including in vivo cone photoreceptor mosaic in KCNV2-related "cone dystrophy with supernormal rod electroretinogram". , 2013, Investigative ophthalmology & visual science.

[118]  Austin Roorda,et al.  Subclinical Capillary Changes in Non-Proliferative Diabetic Retinopathy , 2012, Optometry and vision science : official publication of the American Academy of Optometry.

[119]  A. Roorda,et al.  Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[120]  Austin Roorda,et al.  Outer retinal structure in patients with acute zonal occult outer retinopathy. , 2012, American journal of ophthalmology.

[121]  Jessica I. W. Morgan,et al.  Cone photoreceptor mosaic disruption associated with Cys203Arg mutation in the M-cone opsin , 2009, Proceedings of the National Academy of Sciences.

[122]  A. Roorda,et al.  Adaptive optics ophthalmoscopy. , 2015, Annual review of vision science.

[123]  Austin Roorda,et al.  Noninvasive visualization and analysis of parafoveal capillaries in humans. , 2010, Investigative ophthalmology & visual science.

[124]  Ronald Klein,et al.  The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: the twenty-five-year incidence of macular edema in persons with type 1 diabetes. , 2009, Ophthalmology.

[125]  Y. Tano,et al.  Imaging of titanium:sapphire laser retinal injury by adaptive optics fundus imaging and Fourier-domain optical coherence tomography. , 2009, American journal of ophthalmology.

[126]  E. Souied,et al.  In vivo evaluation of photoreceptor mosaic in early onset large colloid drusen using adaptive optics , 2012, Acta ophthalmologica.

[127]  A. Roorda,et al.  High-resolution images of retinal structure in patients with choroideremia. , 2013, Investigative Ophthalmology and Visual Science.

[128]  Atsushi Hayashi,et al.  Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa , 2013, Clinical ophthalmology.

[129]  Maureen Neitz,et al.  Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[130]  W. Hauswirth,et al.  Cone-Directed Gene Therapy With rAAV Leads to Restoration of Cone Function in a Canine Model of Achromatopsia , 2007 .

[131]  Jungtae Rha,et al.  Adaptive optics flood-illumination camera for high speed retinal imaging. , 2003, Optics express.

[132]  Robert J Zawadzki,et al.  Fourier-Domain Optical Coherence Tomography and Adaptive Optics Reveal Nerve Fiber Layer Loss and Photoreceptor Changes in a Patient With Optic Nerve Drusen , 2008, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[133]  Marco Lombardo,et al.  ANALYSIS OF RETINAL CAPILLARIES IN PATIENTS WITH TYPE 1 DIABETES AND NONPROLIFERATIVE DIABETIC RETINOPATHY USING ADAPTIVE OPTICS IMAGING , 2013, Retina.

[134]  Jessica I. Wolfing,et al.  High-resolution retinal imaging of cone-rod dystrophy. , 2006, Ophthalmology.

[135]  Inherited Retinal Degenerations , 2010, International ophthalmology clinics.

[136]  D. M. Tait,et al.  Arrested development: High-resolution imaging of foveal morphology in albinism , 2010, Vision Research.

[137]  Michel Paques,et al.  Adaptive optics imaging of geographic atrophy. , 2013, Investigative ophthalmology & visual science.

[138]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[139]  J. Mollon,et al.  X-linked cone dystrophy and colour vision deficiency arising from a missense mutation in a hybrid L/M cone opsin gene , 2013, Vision Research.

[140]  Robert J Zawadzki,et al.  Visual insignificance of the foveal pit: reassessment of foveal hypoplasia as fovea plana. , 2008, Archives of ophthalmology.

[141]  K. Takayama,et al.  Photoreceptor damage and foveal sensitivity in surgically closed macular holes: an adaptive optics scanning laser ophthalmoscopy study. , 2012, American journal of ophthalmology.

[142]  U. Acharya,et al.  A survey and comparative study on the instruments for glaucoma detection. , 2012, Medical engineering & physics.

[143]  Y. Tano,et al.  Photoreceptor images of normal eyes and of eyes with macular dystrophy obtained in vivo with an adaptive optics fundus camera , 2008, Japanese Journal of Ophthalmology.

[144]  A. Roorda,et al.  High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. , 2007, Investigative ophthalmology & visual science.

[145]  Christian Ahlers,et al.  Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension , 2011, Biomedical optics express.

[146]  P. Humphries,et al.  Gene-based therapies for dominantly inherited retinopathies , 2011, Gene Therapy.