Stability diagrams for a memristor oscillator

The simplest chaotic circuit containing a memristor involves a capacitor C, an inductor L, and two parameters, α and β, characterizing the memristor. Chaos was observed experimentally for three combinations of these parameters. Here, we report high resolution stability diagrams displaying an abundance of tunable ranges of periodic and chaotic self-oscillations for this circuit, in all six possible control planes. We predict dynamically rich and intricate sequences of oscillations that are experimentally accessible in the system.

[1]  Erik Lindberg,et al.  Discontinuous Spirals of Stable Periodic Oscillations , 2013, Scientific Reports.

[2]  Leon O. Chua,et al.  Memristor Networks , 2014, Springer International Publishing.

[3]  Mohammed E. Fouda,et al.  On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor , 2015 .

[4]  Fang Yuan,et al.  Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. , 2017, Chaos.

[5]  Leon O. Chua,et al.  Topological Analysis of Chaotic Solution of a Three-Element Memristive Circuit , 2014, Int. J. Bifurc. Chaos.

[6]  Luigi Fortuna,et al.  Experimental Evidence of Chaos from Memristors , 2015, Int. J. Bifurc. Chaos.

[7]  Thorsten Pöschel,et al.  Zig-zag networks of self-excited periodic oscillations in a tunnel diode and a fiber-ring laser. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Jaume Llibre,et al.  ON THE INTEGRABILITY OF A MUTHUSWAMY–CHUA SYSTEM , 2012 .

[9]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[10]  Jason A. C. Gallas,et al.  How similar is the performance of the cubic and the piecewise-linear circuits of Chua? , 2010 .

[11]  Yoshio Nishi,et al.  Spatially uniform resistance switching of low current, high endurance titanium-niobium-oxide memristors. , 2017, Nanoscale.

[12]  Jason A. C. Gallas,et al.  The Structure of Infinite Periodic and Chaotic Hub Cascades in Phase Diagrams of Simple Autonomous Flows , 2010, Int. J. Bifurc. Chaos.

[13]  L. Chua Memristor, Hodgkin–Huxley, and Edge of Chaos , 2013, Nanotechnology.

[14]  Jason A. C. Gallas,et al.  Spiking Systematics in Some CO2 Laser Models , 2016 .

[15]  J. Gallas,et al.  Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. , 2008, Physical review letters.

[16]  J Bragard,et al.  Chaotic dynamics of a magnetic nanoparticle. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  J. G. Freire,et al.  Stern-Brocot trees in the periodicity of mixed-mode oscillations. , 2011, Physical chemistry chemical physics : PCCP.

[18]  John Paul Strachan,et al.  Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing , 2017, Nature.

[19]  Luis Fernando Mello,et al.  Exploring the Dynamics of a Third-Order Phase-Locked Loop Model , 2018, Int. J. Bifurc. Chaos.

[20]  B. M. Fulk MATH , 1992 .

[21]  Luigi Fortuna,et al.  A Gallery of Chaotic oscillators Based on HP memristor , 2013, Int. J. Bifurc. Chaos.

[22]  Leon O. Chua,et al.  Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.

[23]  Angelo Di Garbo,et al.  Torus Breakdown in a Uni Junction Memristor , 2018, 2018 IEEE Workshop on Complexity in Engineering (COMPENG).

[24]  M. Di Ventra,et al.  Chaotic memristor , 2011, 1101.4618.

[25]  M. Gallas,et al.  Distribution of chaos and periodic spikes in a three-cell population model of cancer , 2014 .

[26]  Sundarapandian Vaidyanathan,et al.  Advances in Memristors, Memristive Devices and Systems , 2017 .

[27]  Ronald Tetzlaff,et al.  Nonlinear Dynamics of a Locally-Active Memristor , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Leandro Junges,et al.  Intricate routes to chaos in the Mackey-Glass delayed feedback system , 2012 .

[29]  Edward N. Lorenz,et al.  Compound windows of the Hénon-map , 2008 .

[30]  Jaume Llibre,et al.  LIOUVILLIAN AND ANALYTIC FIRST INTEGRALS FOR THE BRUSSELATOR SYSTEM , 2012 .

[31]  Holokx A. Albuquerque,et al.  Extensive Numerical Study and Circuitry Implementation of the Watt Governor Model , 2017, Int. J. Bifurc. Chaos.

[32]  Huagan Wu,et al.  Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator , 2016 .

[33]  P. Glendinning,et al.  Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Xiang Zhang,et al.  Dynamics of the Muthuswamy-Chua System , 2013, Int. J. Bifurc. Chaos.

[35]  M. Baptista,et al.  Parameter space of experimental chaotic circuits with high-precision control parameters. , 2016, Chaos.

[36]  Leon Glass,et al.  Bifurcation structures in two-dimensional maps: The endoskeletons of shrimps , 2013 .