Stability diagrams for a memristor oscillator
暂无分享,去创建一个
[1] Erik Lindberg,et al. Discontinuous Spirals of Stable Periodic Oscillations , 2013, Scientific Reports.
[2] Leon O. Chua,et al. Memristor Networks , 2014, Springer International Publishing.
[3] Mohammed E. Fouda,et al. On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor , 2015 .
[4] Fang Yuan,et al. Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis. , 2017, Chaos.
[5] Leon O. Chua,et al. Topological Analysis of Chaotic Solution of a Three-Element Memristive Circuit , 2014, Int. J. Bifurc. Chaos.
[6] Luigi Fortuna,et al. Experimental Evidence of Chaos from Memristors , 2015, Int. J. Bifurc. Chaos.
[7] Thorsten Pöschel,et al. Zig-zag networks of self-excited periodic oscillations in a tunnel diode and a fiber-ring laser. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[8] Jaume Llibre,et al. ON THE INTEGRABILITY OF A MUTHUSWAMY–CHUA SYSTEM , 2012 .
[9] J. Gallas,et al. Structure of the parameter space of the Hénon map. , 1993, Physical review letters.
[10] Jason A. C. Gallas,et al. How similar is the performance of the cubic and the piecewise-linear circuits of Chua? , 2010 .
[11] Yoshio Nishi,et al. Spatially uniform resistance switching of low current, high endurance titanium-niobium-oxide memristors. , 2017, Nanoscale.
[12] Jason A. C. Gallas,et al. The Structure of Infinite Periodic and Chaotic Hub Cascades in Phase Diagrams of Simple Autonomous Flows , 2010, Int. J. Bifurc. Chaos.
[13] L. Chua. Memristor, Hodgkin–Huxley, and Edge of Chaos , 2013, Nanotechnology.
[14] Jason A. C. Gallas,et al. Spiking Systematics in Some CO2 Laser Models , 2016 .
[15] J. Gallas,et al. Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. , 2008, Physical review letters.
[16] J Bragard,et al. Chaotic dynamics of a magnetic nanoparticle. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] J. G. Freire,et al. Stern-Brocot trees in the periodicity of mixed-mode oscillations. , 2011, Physical chemistry chemical physics : PCCP.
[18] John Paul Strachan,et al. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing , 2017, Nature.
[19] Luis Fernando Mello,et al. Exploring the Dynamics of a Third-Order Phase-Locked Loop Model , 2018, Int. J. Bifurc. Chaos.
[20] B. M. Fulk. MATH , 1992 .
[21] Luigi Fortuna,et al. A Gallery of Chaotic oscillators Based on HP memristor , 2013, Int. J. Bifurc. Chaos.
[22] Leon O. Chua,et al. Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.
[23] Angelo Di Garbo,et al. Torus Breakdown in a Uni Junction Memristor , 2018, 2018 IEEE Workshop on Complexity in Engineering (COMPENG).
[24] M. Di Ventra,et al. Chaotic memristor , 2011, 1101.4618.
[25] M. Gallas,et al. Distribution of chaos and periodic spikes in a three-cell population model of cancer , 2014 .
[26] Sundarapandian Vaidyanathan,et al. Advances in Memristors, Memristive Devices and Systems , 2017 .
[27] Ronald Tetzlaff,et al. Nonlinear Dynamics of a Locally-Active Memristor , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.
[28] Leandro Junges,et al. Intricate routes to chaos in the Mackey-Glass delayed feedback system , 2012 .
[29] Edward N. Lorenz,et al. Compound windows of the Hénon-map , 2008 .
[30] Jaume Llibre,et al. LIOUVILLIAN AND ANALYTIC FIRST INTEGRALS FOR THE BRUSSELATOR SYSTEM , 2012 .
[31] Holokx A. Albuquerque,et al. Extensive Numerical Study and Circuitry Implementation of the Watt Governor Model , 2017, Int. J. Bifurc. Chaos.
[32] Huagan Wu,et al. Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator , 2016 .
[33] P. Glendinning,et al. Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[34] Xiang Zhang,et al. Dynamics of the Muthuswamy-Chua System , 2013, Int. J. Bifurc. Chaos.
[35] M. Baptista,et al. Parameter space of experimental chaotic circuits with high-precision control parameters. , 2016, Chaos.
[36] Leon Glass,et al. Bifurcation structures in two-dimensional maps: The endoskeletons of shrimps , 2013 .