High-speed and ultralow-chirp 11.55 mu m multiquantum well lambda /4-shifted DFB lasers

A high-speed ultralow-chirp 1.55 mu m multiple-quantum-well (MQW) lambda /4-shifted distributed feedback (DFB) laser is demonstrated by using low capacitance structure and by the optimization of an NQW structure in an active layer. A 3-dB bandwidth of 14 GHz as an NQW-DFB laser was achieved, and a chirp width of 3.4 AA (20 dB down full width) was also achieved at 10 Gb/s direct modulation. In addition, kL dependence of chirp width is identified by the adiabatic chirping width is identified by the adiabatic chirping due to the spatial hole burning along a laser axis. From the systematic investigation of the nonlinear gain coefficient of NQW lasers as well as bulk lasers, it is suggested that the physical origin of nonlinear damping can be explained by the spectral hole burning theory. >

[1]  L. D. Westbrook,et al.  Intensity noise in 1.5 mu m GaInAs quantum well buried heterostructure lasers , 1989 .

[2]  Rodney S. Tucker,et al.  Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser , 1983 .

[3]  M. S. Skolnick,et al.  InGaAs‐InP multiple quantum wells grown by atmospheric pressure metalorganic chemical vapor deposition , 1987 .

[4]  Kazuhisa Uomi,et al.  Modulation-Doped Multi-Quantum Well (MD-MQW) Lasers. I. Theory , 1990 .

[5]  High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers , 1985 .

[6]  K. Uomi,et al.  Stabilization of the longitudinal mode against spatial hole burning in lambda /4-shifted DFB lasers by quantum size effect , 1990, IEEE Photonics Technology Letters.

[7]  R. Olshansky,et al.  Frequency response of 1.3µm InGaAsP high speed semiconductor lasers , 1987 .

[8]  M. Newkirk,et al.  Low-temperature measurement of the fundamental frequency response of a semiconductor laser by active-layer photomixing , 1989 .

[9]  M. Newkirk,et al.  Parasitic-free measurement of the fundamental frequency response of a semiconductor laser by active-layer photomixing , 1988 .

[10]  K. Uomi,et al.  Ultralow chirp and high-speed 1.55 mu m multiquantum well lambda /4-shifted DFB lasers , 1990, IEEE Photonics Technology Letters.

[11]  N. Chinone,et al.  Novel method to fabricate corrugation for a λ/4-shifted distributed feedback laser using a grating photomask , 1989 .

[12]  Minoru Yamada,et al.  Analysis of gain suppression in undoped injection lasers , 1981 .

[13]  Erich P. Ippen,et al.  Subpicosecond gain dynamics in GaAlAs laser diodes , 1987 .

[14]  Naoki Chinone,et al.  High Relaxation Oscillation Frequency (beyond 10 GHz) of GaAlAs Multiquantum Well Lasers , 1985 .

[15]  Govind P. Agrawal,et al.  Gain nonlinearities in semiconductor lasers: Theory and application to distributed feedback lasers , 1987 .

[16]  S. R. Forrest,et al.  An n‐In0.53Ga0.47As/n‐InP rectifier , 1981 .

[17]  K. Otsuka,et al.  Polarisation-dependent gain-current relationship in GaAs-AlGaAs MQW laser diodes , 1983 .

[18]  J. Kinoshita,et al.  Transient chirping in distributed-feedback (DFB) lasers: effect of spatial hole-burning along the laser axis , 1988 .

[19]  Ikuo Mito,et al.  1.5 mu m multiple-quantum-well distributed feedback laser diodes grown on corrugated InP by MOVPE , 1988 .

[20]  Yasuhiko Arakawa,et al.  Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers , 1985 .

[21]  T. Koch,et al.  Effect of nonlinear gain reduction on semiconductor laser wavelength chirping , 1986 .

[22]  Naoki Chinone,et al.  Ultrahigh relaxation oscillation frequency (up to 30 GHz) of highly p-doped GaAs/GaAlAs multiple quantum well lasers , 1987 .

[23]  Kiichi Yamashita,et al.  10 Gbit/s, 100km nonrepeatered fibre transmission experiment using a high-sensitivity semiconductor optical preamplifier , 1990 .

[24]  K. Uomi,et al.  Ultrahigh-speed 1.55 mu m lambda /4-shifted DFB PIQ-BH lasers with bandwidth of 17 GHz , 1989 .

[25]  Y. Arakawa,et al.  Effect of nonlinear gain on modulation dynamics in quantum-well lasers , 1989 .

[26]  C. Su,et al.  Simultaneous measurement of spontaneous emission rate, nonlinear gain coefficient, and carrier lifetime in semiconductor lasers using a parasitic‐free optical modulation technique , 1990 .

[27]  K. Uomi,et al.  Modulation-Doped Multi-Quantum Well (MD-MQW) Lasers. : II. Experiment , 1990 .

[28]  K. Uomi,et al.  Novel method of determining conduction‐band discontinuities by using monolayer energy splitting in quantum‐well structures , 1990 .

[29]  L. Korte,et al.  High-speed AlGaAs/GaAs multiple quantum well ridge waveguide lasers , 1989 .

[30]  K. Uomi,et al.  Spectral linewidth reduction by low spatial hole burning in 1.5 mu m multi-quantum-well lambda 4-shifted DFB lasers , 1990 .

[31]  M. Aoki,et al.  Oscillation wavelength and laser structure dependence of nonlinear damping effect in semiconductor lasers , 1991 .

[32]  Masamichi Yamanishi,et al.  Comment on Polarization Dependent Momentum Matrix Elements in Quantum Well Lasers , 1984 .

[33]  M. Choy,et al.  Measurements of the nonlinear damping factor in 1.5 μm distributed feedback lasers , 1989 .

[34]  K. Uomi,et al.  Intrinsic modulation bandwidth in ultra-high-speed 1.3 and 1.55 mu m GaInAsP DFB lasers , 1989 .

[35]  N. Henmi,et al.  Analysis of wavelength chirping for /spl lambda//4 shifted dfb ld considering spatial hole-burning along cavity , 1990, 12th IEEE International Conference on Semiconductor Laser.

[36]  S. Yamakoshi,et al.  Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers , 1987 .