Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube – Enabled Architecture

Vapor deposition techniques were utilized to synthesize very thick (∼1 mm) Li-ion battery anodes consisting of vertically aligned carbon nanotubes coated with silicon and carbon. The produced anode demonstrated ultrahigh thermal (>400 W·m(-1) ·K(-1)) and high electrical (>20 S·m(-1)) conductivities, high cycle stability, and high average capacity (>3000 mAh·g(Si) (-1)). The processes utilized allow for the conformal deposition of other materials, thus making it a promising architecture for the development of Li-ion anodes and cathodes with greatly enhanced electrical and thermal conductivities.

[1]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[2]  G. Yushin,et al.  Nanosilicon‐Coated Graphene Granules as Anodes for Li‐Ion Batteries , 2011 .

[3]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[4]  Bernard Bäker,et al.  Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients , 2011 .

[5]  Wei Wang,et al.  Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery , 2011 .

[6]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[7]  Menachem Nathan,et al.  Novel porous-silicon structures for 3D-interlaced microbatteries , 2010 .

[8]  Pierre-Louis Taberna,et al.  Nanoarchitectured 3D Cathodes for Li‐Ion Microbatteries , 2010, Advanced materials.

[9]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[10]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[11]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[12]  Chunsheng Wang,et al.  A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. , 2010, Chemical communications.

[13]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[14]  D. Teweldebrhan,et al.  Thermal properties of the optically transparent pore-free nanostructured yttria-stabilized zirconia , 2009 .

[15]  Pierre-Louis Taberna,et al.  High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries , 2009 .

[16]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[17]  H. Mimura,et al.  One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition , 2008 .

[18]  Alexander A. Balandin,et al.  Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon , 2008 .

[19]  C. N. Lau,et al.  PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .

[20]  Near-Field Optical Transducer for Heat-Assisted Magnetic Recording for Beyond-10-Tbit/in 2 Densities , 2008 .

[21]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[22]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[23]  J. Tarascon,et al.  Si Electrodes for Li-Ion batteries- A new way to look at an old problem , 2008 .

[24]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[25]  Fred Roozeboom,et al.  3‐D Integrated All‐Solid‐State Rechargeable Batteries , 2007 .

[26]  Yet-Ming Chiang,et al.  Spatially Resolved Modeling of Microstructurally Complex Battery Architectures , 2007 .

[27]  Ryne P. Raffaelle,et al.  Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy , 2007 .

[28]  A. Martin,et al.  Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation , 2006 .

[29]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[30]  A. Balandin,et al.  Phonon-hopping thermal conduction in quantum dot superlattices , 2005 .

[31]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[32]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[33]  B. Dunn,et al.  C-MEMS for the Manufacture of 3D Microbatteries , 2004 .

[34]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[35]  Ralph E. White,et al.  Development of First Principles Capacity Fade Model for Li-Ion Cells , 2004 .

[36]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[37]  Herbert L Case,et al.  An accelerated calendar and cycle life study of Li-ion cells. , 2001 .

[38]  R. Moshtev,et al.  State of the art of commercial Li ion batteries , 2000 .

[39]  William D. Nix,et al.  Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems , 2000 .

[40]  C. E. Tracy,et al.  Fabrication of LiV2O5 thin-film electrodes for rechargeable lithium batteries , 1998 .

[41]  B. Way,et al.  Nanodispersed silicon in pregraphitic carbons , 1995 .

[42]  R. Huggins Solid State Ionics , 1989 .