Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation

By using various techniques, we investigate the (2$$+$$+1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation. This equation is integrable under the mean of the consistent Riccati expansion method. The truncated Painlevé expansion, the simplified Hirota’s method and other methods are used as powerful vehicles to conduct the analysis. We formally derive, in explicit forms, abundant solutions of distinct physical structures, including multiple soliton solutions, multiple complex soliton solutions, kink solutions and singular solutions.

[1]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[2]  Peter J. Olver,et al.  Evolution equations possessing infinitely many symmetries , 1977 .

[3]  O I Bogoyavlenskiĭ,et al.  OVERTURNING SOLITONS IN NEW TWO-DIMENSIONAL INTEGRABLE EQUATIONS , 1990 .

[4]  D. Levi,et al.  Painlevé transcendents : their asymptotics and physical applications , 1992 .

[5]  Willy Hereman,et al.  Symbolic methods to construct exact solutions of nonlinear partial differential equations , 1997 .

[6]  J. A. E. R. Institute,et al.  N soliton solutions to the Bogoyavlenskii-Schiff equation and a quest for the soliton solution in (3 1) dimensions , 1998, solv-int/9801003.

[7]  The Bogoyavlenskii-Schiff hierarchy and integrable equations in (2 + 1) dimensions , 1999 .

[8]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[9]  Abdul-Majid Wazwaz,et al.  Distinct variants of the KdV equation with compact and noncompact structures , 2004, Appl. Math. Comput..

[10]  Suheil A. Khuri,et al.  Soliton and periodic solutions for higher order wave equations of KdV type (I) , 2005 .

[11]  W. Hereman,et al.  Symbolic Software for the Painlevé Test of Nonlinear Ordinary and Partial Differential Equations , 2005, nlin/0505004.

[12]  Abdul-Majid Wazwaz,et al.  New solitons and kinks solutions to the Sharma-Tasso-Olver equation , 2007, Appl. Math. Comput..

[13]  S. Khuri Exact solutions for a class of nonlinear evolution equations: A unified ansätze approach , 2008 .

[14]  Dumitru Mihalache,et al.  Few-optical-cycle solitons: Modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models , 2009 .

[15]  Optical solitons with power law nonlinearity using Lie group analysis , 2009 .

[16]  Anjan Biswas,et al.  Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients , 2009 .

[17]  Anjan Biswas,et al.  Optical Solitons with Parabolic and Dual-Power Law Nonlinearity via Lie Symmetry Analysis , 2009 .

[18]  A. Wazwaz Partial Differential Equations and Solitary Waves Theory , 2009 .

[19]  A. Biswas Solitary waves for power-law regularized long-wave equation and R(m,n) equation , 2010 .

[20]  A. Wazwaz N-soliton solutions for the Vakhnenko equation and its generalized forms , 2010 .

[21]  A. Biswas,et al.  Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity , 2011 .

[22]  Anjan Biswas,et al.  Stationary solutions for nonlinear dispersive Schrödinger’s equation , 2011 .

[23]  A. Wazwaz A new generalized fifth-order nonlinear integrable equation , 2011 .

[24]  Dumitru Mihalache,et al.  Models of few optical cycle solitons beyond the slowly varying envelope approximation , 2013 .

[25]  Gui-qiong Xu,et al.  The integrability for a generalized seventh-order KdV equation: Painlevé property, soliton solutions, Lax pairs and conservation laws , 2014 .

[26]  Abdul-Majid Wazwaz,et al.  Modified Kadomtsev–Petviashvili Equation in (3+1) Dimensions: Multiple Front-Wave Solutions , 2015 .

[27]  A. Wazwaz,et al.  A new integrable ($$3+1$$3+1)-dimensional KdV-like model with its multiple-soliton solutions , 2016 .

[28]  Abdul-Majid Wazwaz,et al.  Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities , 2015, Nonlinear Dynamics.

[29]  Hui Wang,et al.  Nonlocal symmetry, CRE solvability and soliton–cnoidal solutions of the ($$2+1$$2+1)-dimensional modified KdV-Calogero–Bogoyavlenkskii–Schiff equation , 2017 .