A Periodic Table in Three Dimensions: A Sightseeing Tour in the Nanometer World

Abstract Access to techniques to produce and characterize free clusters built up from two to thousands of atoms has during the last decades generated several exciting discoveries and established cluster science as a research field of its own. This field is highly interdisciplinary, and knowledge from different areas of physics and chemistry has been of considerable importance for this rapid development. One of the objectives is to gain an understanding of the material growth i. e. how many atoms are needed in a cluster to make its physical or chemical properties similar to what is known for the corresponding solid. Studies of various properties for some clusters have, however, revealed large fluctuations and periodicities which can be interpreted either as geometric or electronic shell closings, with the appearance of so-called magic numbers. This kind of periodicity is quite different from what is known from the periodic table in atomic physics but has some similarities with the magic numbers in nuclear physics. In addition to clusters characterized by shell structure, also very unique clusters exist such as the fullerenes, in particular Buckminsterfullerene or Ceo discovered in 1985, which was a new form of carbon different from the earlier known forms of graphite and diamond. The field of fullerenes has, especially, after the invention of a method for production of macroscopic amounts in 1990, developed in an extremely exciting way with several serendipitous advances including fabrication of crystals, films and new materials with unique properties such as the nanotubes, carbon onions and met cars. Many of these discoveries have opened up new areas of modern mesoscopic physics and materials science. Particularly interesting is how some data available for clusters and fullerenes show periodicities which might be classified in “A Periodic Table in Three Dimensions”.

[1]  Rademann,et al.  Size dependence of the gradual transition to metallic properties in isolated mercury clusters. , 1987, Physical review letters.

[2]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[3]  Harold W. Kroto C60: BUCKMINSTERFULLERENE, THE CELESTIAL SPHERE THAT FELL TO EARTH , 1992 .

[4]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[5]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[6]  Wilhelm Hanle,et al.  Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz , 1924 .

[7]  Pedersen,et al.  Plasma excitations in charged sodium clusters. , 1993, Physical review. B, Condensed matter.

[8]  Harold W. Kroto,et al.  Isolation, separation and characterisation of the fullerenes C60 and C70 : the third form of carbon , 1990 .

[9]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[10]  T. Ichihashi,et al.  Opening carbon nanotubes with oxygen and implications for filling , 1993, Nature.

[11]  J. Jortner Cluster size effects , 1992 .

[12]  James C. Withers,et al.  Yttrium carbide in nanotubes , 1993, Nature.

[13]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[14]  J. English,et al.  Laser excitation spectra and lifetimes of Pb2 and Sn2 produced by YAG laser vaporization , 1982 .

[15]  P. Ajayan,et al.  Capillarity-induced filling of carbon nanotubes , 1993, Nature.

[16]  T. P. Martin,et al.  Observation of quantum supershells in clusters of sodium atoms , 1991, Nature.

[17]  William F. Meggers,et al.  Quantum Theory of Atomic Structure , 1960 .

[18]  H. Limberger,et al.  Photoionization spectra of cesium and cesium oxide clusters , 1989 .

[19]  A. Rosén,et al.  Optical spectrum of the icosahedral C60- “follene-60” , 1987 .

[20]  Donald M. Cox,et al.  Production and characterization of supersonic carbon cluster beams , 1984 .

[21]  T. P. Martin,et al.  Observation of electronic shells and shells of atoms in large Na clusters , 1990 .

[22]  Hansen,et al.  Supershells in metal clusters. , 1990, Physical review. B, Condensed matter.

[23]  K. J. Taylor,et al.  Ultraviolet photoelectron spectra of coinage metal clusters , 1992 .

[24]  D. Murphy,et al.  Superconductivity at 18 K in potassium-doped C60 , 1991, Nature.

[25]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[26]  W. Ekardt,et al.  Work function of small metal particles: Self-consistent spherical jellium-background model , 1984 .

[27]  D. E. Powers,et al.  Laser production of supersonic metal cluster beams , 1981 .

[28]  Robert G. Parr,et al.  Density Functional Theory of Electronic Structure , 1996 .

[29]  I. Lindgren A note on the hartree-fock-slater approximation , 1965 .

[30]  R. Buhrman,et al.  Ultrafine metal particles , 1976 .

[31]  W. Pauli,et al.  Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren , 1925 .

[32]  Quantum chemistry of small clusters of elements of groups Ia, Ib, and IIa: fundamental concepts, predictions, and interpretation of experiments , 1991 .

[33]  Baig,et al.  Strong-coupling analysis of the critical dimensionality of space-time in SU(2) lattice gauge theory. , 1987, Physical review. D, Particles and fields.

[34]  D. E. Beck Self-consistent calculation of the electronic structure of small jellium spheres , 1984 .

[35]  Chin-Fu Tsang,et al.  On the nuclear structure and stability of heavy and superheavy elements , 1969 .

[36]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[37]  Rosén,et al.  Investigation of niobium clusters: Bare and CO-adsorption. , 1996, Physical review. B, Condensed matter.

[38]  Ingvar Lindgren,et al.  Atomic Many-Body Theory , 1982 .

[39]  G. Shortley,et al.  The Theory of Atomic Spectra , 1935 .

[40]  Malinowski,et al.  Multilayer metal coverage of fullerene molecules. , 1994, Physical review letters.

[41]  A. J. Muller,et al.  Conducting films of C60 and C70 by alkali-metal doping , 1991, Nature.

[42]  N. Bohr,et al.  Der Bau der Atome und die physikalischen und chemischen Eigenschaften der Elemente , 1922 .

[43]  T. P. Martin Shells of atoms , 1996 .

[44]  T. P. Martin,et al.  Producing and detecting very large clusters , 1994 .

[45]  Matthias Brack,et al.  The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches , 1993 .

[46]  I. Rabi,et al.  A New Method of Measuring Nuclear Magnetic Moment , 1938 .

[47]  Clemenger,et al.  Ellipsoidal shell structure in free-electron metal clusters. , 1985, Physical review. B, Condensed matter.

[48]  P. Sandars,et al.  Relativistic effects in many electron hyperfine structure I. Theory , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[49]  D. R. Hartree,et al.  The calculation of atomic structures , 1959 .

[50]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[51]  T. P. Martin,et al.  Metal coated fullerene molecules and clusters , 1993 .

[52]  K. Siegbahn,et al.  Alpha-, beta- and gamma-ray spectroscopy , 1965 .

[53]  F. Hillenkamp,et al.  Laser-induced cluster-ions from thin foils of metals and semiconductors , 1981 .

[54]  H. Kroto,et al.  Space, Stars, C60, and Soot , 1988, Science.

[55]  A. Kaldor,et al.  Photoionization measurements on isolated iron-atom clusters , 1983 .

[56]  G. C. Nieman,et al.  Metal‐deficient iron oxide clusters formed in the gas phase , 1984 .

[57]  M. S. de Vries,et al.  Atoms in carbon cages: the structure and properties of endohedral fullerenes , 1993, Nature.

[58]  Jan K. Labanowski,et al.  Density Functional Methods in Chemistry , 1991 .

[59]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[60]  M. Brenner,et al.  Clustering Phenomena in Atoms and Nuclei , 1992 .

[61]  E. K. Parks,et al.  Gas phase reactions of iron clusters with hydrogen. I. Kinetics , 1985 .

[62]  A. Yeremin,et al.  Production and decay of269110 , 1995 .

[63]  A. Hirsch Chemistry of Fullerenes , 1994 .

[64]  John C. Slater,et al.  Magnetic Effects and the Hartree-Fock Equation , 1951 .

[65]  A. Bohr ON THE QUANTIZATION OF ANGULAR MOMENTA IN HEAVY NUCLEI , 1951 .

[66]  D. Huffman Interstellar grains The interaction of light with a small-particle system , 1977 .

[67]  D. Ugarte Curling and closure of graphitic networks under electron-beam irradiation , 1992, Nature.

[68]  H. Casimir On the interaction between atomic nuclei and electrons , 1936 .

[69]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[70]  Robert W. Marks,et al.  The Dymaxion world of Buckminster Fuller , 1960 .

[71]  Winston A. Saunders,et al.  Electronic Shell Structure and Abundances of Sodium Clusters , 1984 .

[72]  Giacinto Scoles,et al.  Atomic and Molecular Beam Methods , 1988 .

[73]  I. Lindgren Atomic beam resonance apparatus with six-pole magnets for radioactive isotopes , 1958 .

[74]  W. Krätschmer,et al.  The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule , 1990 .

[75]  G. Breit Possible Effects of Nuclear Spin on X-Ray Terms , 1930 .

[76]  S. C. O'brien,et al.  Lanthanum complexes of spheroidal carbon shells , 1985 .

[77]  R. Smalley Laser Studies of Metal Cluster Beams , 1983 .

[78]  T. P. Martin,et al.  Electronic shell structure of laser-warmed Na clusters , 1991 .

[79]  K. P. Kerns,et al.  Ti8C12+-Metallo-Carbohedrenes: A New Class of Molecular Clusters? , 1992, Science.

[80]  D. Butler French action aims to quell BSE fears , 1996, Nature.

[81]  Olof Echt,et al.  Magic Numbers for Sphere Packings: Experimental Verification in Free Xenon Clusters , 1981 .

[82]  W. Krätschmer,et al.  Solid C 60 – How we Found It , 1990 .

[83]  M. Jarrold,et al.  STRUCTURES AND FORMATION OF SMALL LACN+ METALLOFULLERENES , 1994 .

[84]  Metal-coated fullerenes , 1995 .

[85]  A. Vittone,et al.  Dusty Objects in the Universe , 1990 .

[86]  Kosmas Prassides,et al.  Physics and chemistry of the fullerenes , 1994 .

[87]  Wanda Andreoni,et al.  The chemical physics of fullerenes 10 (and 5) years later : the far-reaching impact of the discovery of C60 , 1996 .

[88]  B. Fricke Superheavy elements a prediction of their chemical and physical properties , 1975 .

[89]  D. Bethune,et al.  C60 has icosahedral symmetry , 1990 .

[90]  I. Ragnarsson,et al.  Atomic beam magnetic resonance apparatus for systematic measurement of hyperfine structure anomalies (Bohr-Weisskopf effect) , 1993 .

[91]  Zimmermann,et al.  Clusters of fullerene molecules. , 1993, Physical review letters.

[92]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[93]  L. Lundsberg‐Nielsen,et al.  Plasmon profiles and shapes of sodium cluster ions , 1993 .

[94]  C. Ekstrom,et al.  CONSTRUCTION OF A FOCUSSING ATOMIC-BEAM MAGNETIC RESONANCE APPARATUS. , 1972 .

[95]  Richard W. Siegel,et al.  Exploring Mesoscopia: The Bold New World of Nanostructures , 1993 .

[96]  R. Sternheimer On Nuclear Quadrupole Moments , 1950 .

[97]  John C. Slater,et al.  Quantum Theory of Molecules and Solids , 1951 .

[98]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[99]  A. W. Castleman,et al.  Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter , 1996 .

[100]  Salomonson,et al.  Solution of the pair equation using a finite discrete spectrum. , 1989, Physical review. A, General physics.

[101]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[102]  J. W. V. Spronsen,et al.  The Periodic System of Chemical Elements. A History of the First Hundred Years , 1969 .

[103]  B. Fricke,et al.  Relativistic effects in physics and chemistry of element 105. I. Periodicities in properties of group 5 elements. Electronic structure of the pentachlorides , 1992 .

[104]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[105]  J. Desclaux A multiconfiguration relativistic DIRAC-FOCK program , 1984 .

[106]  S. Bjørnholm Clusters, condensed matter in embryonic form , 1990 .

[107]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[108]  Temperature measurement of sputtered metal dimers. , 1986, Physical review. B, Condensed matter.

[109]  R. Balian,et al.  Distribution of eigenfrequencies for the wave equation in a finite domain: III. Eigenfrequency density oscillations , 1972 .

[110]  J. Simons,et al.  The Hartree-Fock Method for Atoms , 1979 .

[111]  Arne Rosén,et al.  RELATIVISTIC CALCULATIONS OF ELECTRON BINDING ENERGIES BY A MODIFIED HARTREE--FOCK--SLATER METHOD. , 1968 .

[112]  Sune Svanberg,et al.  Atomic and Molecular Spectroscopy , 2022, Graduate Texts in Physics.

[113]  R. Sternheimer Effect of the Atomic Core on the Magnetic Hyperfine Structure , 1952 .

[114]  John Arents,et al.  Atomic Structure Calculations , 1964 .

[115]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[116]  J. Farges,et al.  Noncrystalline structure of argon clusters. II. Multilayer icosahedral structure of ArN clusters 50 , 1986 .

[117]  H. Fukuyama,et al.  Transport Phenomena in Mesoscopic Systems , 1992 .

[118]  James K. Gimzewski,et al.  Room‐temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device , 1996 .

[119]  Taylor,et al.  Ultraviolet photoelectron spectra of mass-selected copper clusters: Evolution of the 3d band. , 1990, Physical review letters.

[120]  Goodwin,et al.  Density-functional study of niobium clusters. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[121]  Michael T. Bowers,et al.  Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase , 1993, Nature.

[122]  D. R. Hartree,et al.  The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[123]  S. Reimann,et al.  APPLICATIONS OF CLASSICAL PERIODIC ORBIT THEORY TO CIRCULAR BILLIARDS WITH SMALL SCATTERING CENTERS , 1996 .

[124]  P. Debye,et al.  Der Lichtdruck auf Kugeln von beliebigem Material , 2014 .

[125]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .

[126]  Reed,et al.  Nanostructures and mesoscopic systems , 1992 .

[127]  Quantum Transport in Semiconductor Nanostructures , 2004, cond-mat/0412664.

[128]  L. Armstrong Theory of the Hyperfine Structure of Free Atoms , 1971 .

[129]  William Weltner,et al.  Carbon molecules, ions, and clusters , 1989 .

[130]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[131]  P. Ajayan,et al.  Growth morphologies during cobalt-catalyzed single-shell carbon nanotube synthesis , 1993 .

[132]  H. Schüler,et al.  über Abweichungen des Atomkerns von der Kugelsymmetrie , 1935 .

[133]  C. Fischer Self-consistent-field (SCF) and multiconfiguration (MC) Hartree-Fock (HF) methods in atomic calculations: Numerical integration approaches , 1986 .