Response surface models: To reduce or not to reduce?

Abstract In classical response surface methodology, the optimization step uses a small number of important factors. However, in practice, experimenters sometimes fit a second-order model without previous experimentation. In this case, the true model is uncertain and the full model may overfit. Here, we use an extensive simulation to evaluate several analysis strategies in terms of their optimum locating ability, and use both simulation and published experiments to evaluate their general prediction facility. We consider traditional (reducing via p-values; forward selection), regularization (LASSO; Gauss-LASSO), and Bayesian analysis methods.

[1]  N. Lazar,et al.  Moving to a World Beyond “p < 0.05” , 2019, The American Statistician.

[2]  Douglas C. Montgomery,et al.  Analysis of definitive screening designs: Screening vs prediction , 2018 .

[3]  William Li,et al.  Using Definitive Screening Designs to Identify Active First- and Second-Order Factor Effects , 2017 .

[4]  David J. Edwards,et al.  Response surface experiments: A meta-analysis , 2017 .

[5]  N. Lazar,et al.  The ASA Statement on p-Values: Context, Process, and Purpose , 2016 .

[6]  Willis A. Jensen Confirmation Runs in Design of Experiments , 2016 .

[7]  David J. Edwards,et al.  Searching for Powerful Supersaturated Designs , 2015 .

[8]  E. Candès,et al.  Controlling the false discovery rate via knockoffs , 2014, 1404.5609.

[9]  Angela M. Dean,et al.  Screening Strategies in the Presence of Interactions , 2014, Technometrics.

[10]  Dennis L. Sun,et al.  Exact post-selection inference, with application to the lasso , 2013, 1311.6238.

[11]  A. Buja,et al.  Valid post-selection inference , 2013, 1306.1059.

[12]  R. Mead,et al.  Statistical Principles for the Design of Experiments: Applications to Real Experiments , 2012 .

[13]  A. Tsybakov,et al.  Exponential Screening and optimal rates of sparse estimation , 2010, 1003.2654.

[14]  Chris Hans Bayesian lasso regression , 2009 .

[15]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[16]  Yi Lin,et al.  An Efficient Variable Selection Approach for Analyzing Designed Experiments , 2007, Technometrics.

[17]  G. Box,et al.  Response Surfaces, Mixtures and Ridge Analyses , 2007 .

[18]  Luiz Paulo Fávero,et al.  Design and Analysis of Experiments , 2001, Handbook of statistics.

[19]  E. Candès,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[20]  Enrique del Castillo,et al.  Model-Robust Process Optimization Using Bayesian Model Averaging , 2005, Technometrics.

[21]  Douglas C. Montgomery,et al.  The Hierarchy Principle in Designed Industrial Experiments , 2005 .

[22]  Douglas M. Hawkins,et al.  The Problem of Overfitting , 2004, J. Chem. Inf. Model..

[23]  John J. Peterson A Posterior Predictive Approach to Multiple Response Surface Optimization , 2004 .

[24]  J. Lawson One-Step Screening and Process Optimization Experiments , 2003 .

[25]  Bruce E. Ankenman,et al.  A RESPONSE SURFACE TEST BED , 2000 .

[26]  J. A. Nelder,et al.  Functional marginality and response-surface fitting , 2000 .

[27]  Norman R. Draper,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1997 .

[28]  H. Chipman Bayesian variable selection with related predictors , 1995, bayes-an/9510001.

[29]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[30]  Ellen B. Roecker,et al.  Prediction error and its estimation for subset-selected models , 1991 .

[31]  J. Peixoto A Property of Well-Formulated Polynomial Regression Models , 1990 .

[32]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[33]  J. Peixoto Hierarchical Variable Selection in Polynomial Regression Models , 1987 .

[34]  A. Dean,et al.  01. Design and Analysis of Experiments , 2017 .

[35]  Danilo Ardagna,et al.  Process Optimization , 2009, Encyclopedia of Database Systems.

[36]  IN LIMITED , 2008 .

[37]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[38]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[39]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .