Structure–Function Analyses of Multidrug Transporters

[1]  Jonathan C. Cohen,et al.  Crystal structure of the human sterol transporter ABCG5/ABCG8 , 2016, Nature.

[2]  P. Nordlund,et al.  Understanding transport by the major facilitator superfamily (MFS): structures pave the way , 2016, Nature Reviews Molecular Cell Biology.

[3]  S. Iwata,et al.  Structure and mechanism of the mammalian fructose transporter GLUT5 , 2015, Nature.

[4]  Richard Henderson,et al.  Overview and future of single particle electron cryomicroscopy. , 2015, Archives of biochemistry and biophysics.

[5]  Kutti R Vinothkumar,et al.  Membrane protein structures without crystals, by single particle electron cryomicroscopy , 2015, Current opinion in structural biology.

[6]  Nieng Yan,et al.  Structural Biology of the Major Facilitator Superfamily Transporters. , 2015, Annual review of biophysics.

[7]  R. Prasad,et al.  Mutational Analysis of Intracellular Loops Identify Cross Talk with Nucleotide Binding Domains of Yeast ABC Transporter Cdr1p , 2015, Scientific Reports.

[8]  S. Ambudkar,et al.  The multidrug transporter Pdr5 on the 25th anniversary of its discovery: an important model for the study of asymmetric ABC transporters. , 2015, The Biochemical journal.

[9]  P. Penczek,et al.  A Primer to Single-Particle Cryo-Electron Microscopy , 2015, Cell.

[10]  B. Carragher,et al.  Distinct conformational spectrum of homologous multidrug ABC transporters. , 2015, Structure.

[11]  A. Sangamwar,et al.  Translocation mechanism of P-glycoprotein and conformational changes occurring at drug-binding site: Insights from multi-targeted molecular dynamics. , 2014, Biochimica et biophysica acta.

[12]  Miguel C. Teixeira,et al.  MFS multidrug transporters in pathogenic fungi: do they have real clinical impact? , 2014, Front. Physiol..

[13]  C. Sorzano,et al.  3D cryo-electron reconstruction of BmrA, a bacterial multidrug ABC transporter in an inward-facing conformation and in a lipidic environment. , 2014, Journal of molecular biology.

[14]  Jacqueline E. Schein,et al.  Analysis of the Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation , 2014, PLoS genetics.

[15]  Stephen G Aller,et al.  Refined structures of mouse P-glycoprotein , 2013, Protein science : a publication of the Protein Society.

[16]  S. Ambudkar,et al.  The Deviant ATP-binding Site of the Multidrug Efflux Pump Pdr5 Plays an Active Role in the Transport Cycle* , 2013, The Journal of Biological Chemistry.

[17]  P. Biggin,et al.  Substrate versus inhibitor dynamics of P‐glycoprotein , 2013, Proteins.

[18]  E. Pardon,et al.  Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain , 2013, Proceedings of the National Academy of Sciences.

[19]  R. Prasad,et al.  Insight into Pleiotropic Drug Resistance ATP-binding Cassette Pump Drug Transport through Mutagenesis of Cdr1p Transmembrane Domains* , 2013, The Journal of Biological Chemistry.

[20]  Jianping Ding,et al.  Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis , 2013, Nature.

[21]  Tamir Gonen,et al.  Overview of Electron Crystallography of Membrane Proteins: Crystallization and Screening Strategies Using Negative Stain Electron Microscopy , 2013, Current protocols in protein science.

[22]  J. Stindt,et al.  Functional impact of a single mutation within the transmembrane domain of the multidrug ABC transporter Pdr5. , 2013, Biochemistry.

[23]  N. Yan Structural advances for the major facilitator superfamily (MFS) transporters. , 2013, Trends in biochemical sciences.

[24]  Rohitash Kumar,et al.  Candida albicans Flu1-Mediated Efflux of Salivary Histatin 5 Reduces Its Cytosolic Concentration and Fungicidal Activity , 2013, Antimicrobial Agents and Chemotherapy.

[25]  M. Kołaczkowski,et al.  A conserved interdomain communication pathway of pseudosymmetrically distributed residues affects substrate specificity of the fungal multidrug transporter Cdr1p. , 2013, Biochimica et biophysica acta.

[26]  S. Ambudkar,et al.  The Transmission Interface of the Saccharomyces cerevisiae Multidrug Transporter Pdr5: Val-656 Located in Intracellular Loop 2 Plays a Major Role in Drug Resistance , 2012, Antimicrobial Agents and Chemotherapy.

[27]  B. Rochat,et al.  Milbemycins: More than Efflux Inhibitors for Fungal Pathogens , 2012, Antimicrobial Agents and Chemotherapy.

[28]  A. Goffeau,et al.  Yeast ATP-binding cassette transporters conferring multidrug resistance. , 2012, Annual review of microbiology.

[29]  R. Cannon,et al.  Specific interactions between the Candida albicans ABC transporter Cdr1p ectodomain and a d‐octapeptide derivative inhibitor , 2012, Molecular microbiology.

[30]  A. M. George,et al.  Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact models. , 2012, Progress in biophysics and molecular biology.

[31]  R. Prasad,et al.  A key structural domain of the Candida albicans Mdr1 protein. , 2012, The Biochemical journal.

[32]  Jue Chen,et al.  Crystal structure of the multidrug transporter P-glycoprotein from C. elegans , 2012, Nature.

[33]  S. Iwata,et al.  Alternating access mechanism in the POT family of oligopeptide transporters , 2012, The EMBO journal.

[34]  M. Saier,et al.  The major facilitator superfamily (MFS) revisited , 2012, The FEBS journal.

[35]  Koichi Tanabe,et al.  Chimeras of Candida albicans Cdr1p and Cdr2p reveal features of pleiotropic drug resistance transporter structure and function , 2011, Molecular microbiology.

[36]  L. Schmitt,et al.  The multidrug transporter Pdr5: a molecular diode? , 2011, Biological chemistry.

[37]  L. Esser,et al.  Toward understanding the mechanism of action of the yeast multidrug resistance transporter Pdr5p: a molecular modeling study. , 2011, Journal of structural biology.

[38]  O. Prakash,et al.  Analysis of physico-chemical properties of substrates of ABC and MFS multidrug transporters of pathogenic Candida albicans. , 2010, European journal of medicinal chemistry.

[39]  S. Ambudkar,et al.  Divergent signature motifs of nucleotide binding domains of ABC multidrug transporter, CaCdr1p of pathogenic Candida albicans, are functionally asymmetric and noninterchangeable. , 2010, Biochimica et biophysica acta.

[40]  Z. Sauna,et al.  The signaling interface of the yeast multidrug transporter Pdr5 adopts a cis conformation, and there are functional overlap and equivalence of the deviant and canonical Q-loop residues. , 2010, Biochemistry.

[41]  A. Driessen,et al.  Phylogenetic analysis of fungal ABC transporters , 2010, BMC Genomics.

[42]  Lutz Schmitt,et al.  Multidrug efflux pumps: Substrate selection in ATP‐binding cassette multidrug efflux pumps – first come, first served? , 2010, The FEBS journal.

[43]  A. Goffeau,et al.  Fungal PDR transporters: Phylogeny, topology, motifs and function. , 2010, Fungal genetics and biology : FG & B.

[44]  A. M. George,et al.  Multidrug efflux pumps: The structures of prokaryotic ATP‐binding cassette transporter efflux pumps and implications for our understanding of eukaryotic P‐glycoproteins and homologues , 2010, The FEBS journal.

[45]  A. M. George,et al.  ABC transporters: a riddle wrapped in a mystery inside an enigma. , 2009, Trends in biochemical sciences.

[46]  Ingebrigt Sylte,et al.  Theoretical Biology and Medical Modelling Open Access Binding Site of Abc Transporter Homology Models Confirmed by Abcb1 Crystal Structure , 2022 .

[47]  J. J. Coleman,et al.  Efflux in Fungi: La Pièce de Résistance , 2009, PLoS pathogens.

[48]  A. M. George,et al.  Opening of the ADP‐bound active site in the ABC transporter ATPase dimer: Evidence for a constant contact, alternating sites model for the catalytic cycle , 2009, Proteins.

[49]  S. Ambudkar,et al.  The amino acid residues of transmembrane helix 5 of multidrug resistance protein CaCdr1p of Candida albicans are involved in substrate specificity and drug transport. , 2009, Biochimica et biophysica acta.

[50]  A. Goffeau,et al.  Efflux-Mediated Antifungal Drug Resistance , 2009, Clinical Microbiology Reviews.

[51]  Yue Weng,et al.  Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-Specific Drug Binding , 2009, Science.

[52]  D. Rees,et al.  ABC transporters: the power to change , 2009, Nature Reviews Molecular Cell Biology.

[53]  M. Raymond,et al.  Relative Contributions of the Candida albicans ABC Transporters Cdr1p and Cdr2p to Clinical Azole Resistance , 2009, Antimicrobial Agents and Chemotherapy.

[54]  Miguel C. Teixeira,et al.  Drug:H+ antiporters in chemical stress response in yeast. , 2009, Trends in microbiology.

[55]  Z. Sauna,et al.  Mutations Define Cross-talk between the N-terminal Nucleotide-binding Domain and Transmembrane Helix-2 of the Yeast Multidrug Transporter Pdr5 , 2008, Journal of Biological Chemistry.

[56]  D. Choudhury,et al.  MFS transportome of the human pathogenic yeast Candida albicans , 2008, BMC Genomics.

[57]  Da-Neng Wang,et al.  Ins and outs of major facilitator superfamily antiporters. , 2008, Annual review of microbiology.

[58]  Koichi Tanabe,et al.  ABC Transporter Cdr1p Contributes More than Cdr2p Does to Fluconazole Efflux in Fluconazole-Resistant Candida albicans Clinical Isolates , 2008, Antimicrobial Agents and Chemotherapy.

[59]  H. V. van Veen,et al.  Multidrug transport by the ABC transporter Sav1866 from Staphylococcus aureus. , 2008, Biochemistry.

[60]  P. D. Rogers,et al.  Mutations in the multi‐drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole‐resistant Candida albicans strains , 2008, Molecular microbiology.

[61]  F. Robert,et al.  Genomewide Location Analysis of Candida albicans Upc2p, a Regulator of Sterol Metabolism and Azole Drug Resistance , 2008, Eukaryotic Cell.

[62]  K. Kuchler,et al.  A mutation of the H-loop selectively affects rhodamine transport by the yeast multidrug ABC transporter Pdr5 , 2008, Proceedings of the National Academy of Sciences.

[63]  Geoffrey Chang,et al.  Flexibility in the ABC transporter MsbA: Alternating access with a twist , 2007, Proceedings of the National Academy of Sciences.

[64]  Stephan Kopp,et al.  Catalytic cycle of ATP hydrolysis by P-glycoprotein: evidence for formation of the E.S reaction intermediate with ATP-gamma-S, a nonhydrolyzable analogue of ATP. , 2007, Biochemistry.

[65]  R. Homayouni,et al.  The Transcription Factor Mrr1p Controls Expression of the MDR1 Efflux Pump and Mediates Multidrug Resistance in Candida albicans , 2007, PLoS pathogens.

[66]  R. Homayouni,et al.  Genome-Wide Expression and Location Analyses of the Candida albicans Tac1p Regulon , 2007, Eukaryotic Cell.

[67]  K. Locher,et al.  Asymmetry in the Structure of the ABC Transporter-Binding Protein Complex BtuCD-BtuF , 2007, Science.

[68]  D. Diogo,et al.  Genotypic Evolution of Azole Resistance Mechanisms in Sequential Candida albicans Isolates , 2007, Eukaryotic Cell.

[69]  R. Dawson,et al.  Structure and mechanism of ABC transporter proteins. , 2007, Current opinion in structural biology.

[70]  Y. Uehara,et al.  Characterization of Three Classes of Membrane Proteins Involved in Fungal Azole Resistance by Functional Hyperexpression in Saccharomyces cerevisiae , 2007, Eukaryotic Cell.

[71]  Leopold May,et al.  The yeast Pdr5p multidrug transporter: how does it recognize so many substrates? , 2007, Biochemical and biophysical research communications.

[72]  K. Locher,et al.  Structure of an ABC transporter in complex with its binding protein , 2007, Nature.

[73]  K. Locher,et al.  Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP‐PNP , 2007, FEBS letters.

[74]  R. Prasad,et al.  Structure and Function Analysis of CaMdr1p, a Major Facilitator Superfamily Antifungal Efflux Transporter Protein of Candida albicans: Identification of Amino Acid Residues Critical for Drug/H+ Transport , 2007, Eukaryotic Cell.

[75]  S. Ambudkar,et al.  Conserved Asp327 of walker B motif in the N-terminal nucleotide binding domain (NBD-1) of Cdr1p of Candida albicans has acquired a new role in ATP hydrolysis. , 2006, Biochemistry.

[76]  R. Dawson,et al.  Structure of a bacterial multidrug ABC transporter , 2006, Nature.

[77]  G. Chang,et al.  Structure of the Multidrug Transporter EmrD from Escherichia coli , 2006, Science.

[78]  M. Boutry,et al.  Organization and function of the plant pleiotropic drug resistance ABC transporter family , 2006, FEBS letters.

[79]  D. Choudhury,et al.  Complete Inventory of ABC Proteins in Human Pathogenic Yeast, Candida albicans , 2005, Journal of Molecular Microbiology and Biotechnology.

[80]  S. Shukla,et al.  Alanine scanning of transmembrane helix 11 of Cdr1p ABC antifungal efflux pump of Candida albicans: identification of amino acid residues critical for drug efflux. , 2005, The Journal of antimicrobial chemotherapy.

[81]  George Newport,et al.  A Human-Curated Annotation of the Candida albicans Genome , 2005, PLoS genetics.

[82]  D. Hirata,et al.  Mutational analysis of the yeast multidrug resistance ABC transporter Pdr5p with altered drug specificity , 2005, Genes to cells : devoted to molecular & cellular mechanisms.

[83]  K. Hiraga,et al.  Enniatin has a new function as an inhibitor of Pdr5p, one of the ABC transporters in Saccharomyces cerevisiae. , 2005, Biochemical and biophysical research communications.

[84]  D. Sanglard,et al.  TAC1, Transcriptional Activator of CDR Genes, Is a New Transcription Factor Involved in the Regulation of Candida albicans ABC Transporters CDR1 and CDR2 , 2004, Eukaryotic Cell.

[85]  K. Linton,et al.  The ATP switch model for ABC transporters , 2004, Nature Structural &Molecular Biology.

[86]  K. Locher Structure and mechanism of ABC transporters. , 2004, Current opinion in structural biology.

[87]  S. Ambudkar,et al.  Substitution of threonine-1351 in the multidrug transporter Cdr1p of Candida albicans results in hypersusceptibility to antifungal agents and threonine-1351 is essential for synergic effects of calcineurin inhibitor FK520. , 2004, The Journal of antimicrobial chemotherapy.

[88]  Smriti,et al.  Functional Characterization of Candida albicans ABC Transporter Cdr1p , 2003, Eukaryotic Cell.

[89]  C. Higgins,et al.  Three-dimensional Structures of the Mammalian Multidrug Resistance P-glycoprotein Demonstrate Major Conformational Changes in the Transmembrane Domains upon Nucleotide Binding* , 2003, The Journal of Biological Chemistry.

[90]  M. Gottesman,et al.  Studies with Novel Pdr5p Substrates Demonstrate a Strong Size Dependence for Xenobiotic Efflux* , 2003, The Journal of Biological Chemistry.

[91]  T. Yamada-Okabe,et al.  Characterization of the CaNAG3, CaNAG4, and CaNAG6 genes of the pathogenic fungus Candida albicans: possible involvement of these genes in the susceptibilities of cytotoxic agents. , 2002, FEMS microbiology letters.

[92]  T. C. White,et al.  Resistance Mechanisms in Clinical Isolates of Candida albicans , 2002, Antimicrobial Agents and Chemotherapy.

[93]  D. Sanglard,et al.  A common drug‐responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance , 2002, Molecular microbiology.

[94]  M. Arisawa,et al.  Mechanisms of fluconazole resistance in Candida albicans isolates from Japanese AIDS patients. , 2001, The Journal of antimicrobial chemotherapy.

[95]  J. Galazzo,et al.  Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. , 2001, Farmaco.

[96]  O. Lambert,et al.  Use of detergents in two-dimensional crystallization of membrane proteins. , 2000, Biochimica et biophysica acta.

[97]  D. Sanglard,et al.  A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. , 2000, Microbiology.

[98]  A. Seelig,et al.  Structure-activity relationship of P-glycoprotein substrates and modifiers. , 2000, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[99]  J. Morschhäuser,et al.  Targeted gene disruption in Candida albicans wild‐type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates , 2000, Molecular microbiology.

[100]  K. Kuchler,et al.  The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility , 2000, Molecular microbiology.

[101]  K. Kuchler,et al.  Genetic separation of FK506 susceptibility and drug transport in the yeast Pdr5 ATP-binding cassette multidrug resistance transporter. , 1998, Molecular biology of the cell.

[102]  T. C. White,et al.  Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus , 1997, Antimicrobial agents and chemotherapy.

[103]  K. Yamamoto,et al.  An FK506-sensitive Transporter Selectively Decreases Intracellular Levels and Potency of Steroid Hormones* , 1996, The Journal of Biological Chemistry.

[104]  I. Paulsen,et al.  Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[105]  K. Kuchler,et al.  Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters , 1995, Antimicrobial agents and chemotherapy.

[106]  I. Paulsen,et al.  Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes--an analysis. , 1993, Gene.

[107]  J. A. Gorman,et al.  Analysis of a Candida albicans gene that encodes a novel mechanism for resistance to benomyl and methotrexate , 1991, Molecular and General Genetics MGG.

[108]  J. Walker,et al.  Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. , 1982, The EMBO journal.

[109]  C. Su,et al.  Crystallization of membrane proteins by vapor diffusion. , 2015, Methods in enzymology.

[110]  M. Perlin,et al.  Essential letters in the fungal alphabet: ABC and MFS transporters and their roles in survival and pathogenicity. , 2014, Advances in genetics.

[111]  R. Cannon,et al.  Use of a yeast-based membrane protein expression technology to overexpress drug resistance efflux pumps. , 2010, Methods in molecular biology.

[112]  Geoffrey Chang,et al.  Understanding polyspecificity of multidrug ABC transporters: closing in on the gaps in ABCB1. , 2010, Trends in biochemical sciences.