Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations

Abstract We compare isogeometric collocation with isogeometric Galerkin and standard C 0 finite element methods with respect to the cost of forming the matrix and residual vector, the cost of direct and iterative solvers, the accuracy versus degrees of freedom and the accuracy versus computing time. On this basis, we show that isogeometric collocation has the potential to increase the computational efficiency of isogeometric analysis and to outperform both isogeometric Galerkin and standard C 0 finite element methods, when a specified level of accuracy is to be achieved with minimum computational cost. We then explore an adaptive isogeometric collocation method that is based on local hierarchical refinement of NURBS basis functions and collocation points derived from the corresponding multi-level Greville abscissae. We introduce the concept of weighted collocation that can be consistently developed from the weighted residual form and the two-scale relation of B-splines. Using weighted collocation in the transition regions between hierarchical levels, we are able to reliably handle coincident collocation points that naturally occur for multi-level Greville abscissae. The resulting method combines the favorable properties of isogeometric collocation and hierarchical refinement in terms of computational efficiency, local adaptivity, robustness and straightforward implementation, which we illustrate by numerical examples in one, two and three dimensions.

[1]  G. Pinder,et al.  Analysis of an Upstream Weighted Collocation Approximation to the Transport Equation , 1981 .

[2]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[3]  Martin Kronbichler,et al.  Algorithms and data structures for massively parallel generic adaptive finite element codes , 2011, ACM Trans. Math. Softw..

[4]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[5]  Robert Schmidt,et al.  Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis , 2010, Comput. Vis. Sci..

[6]  Manfred Bischoff,et al.  A point to segment contact formulation for isogeometric, NURBS based finite elements , 2013 .

[7]  Peter Wriggers,et al.  Contact treatment in isogeometric analysis with NURBS , 2011 .

[8]  H. Ehlers LECTURERS , 1948, Statistics for Astrophysics.

[9]  Jianmin Zheng,et al.  Generalized hierarchical NURBS for interactive shape modification , 2008, VRCAI.

[10]  Luca F. Pavarino,et al.  Overlapping Schwarz Methods for Isogeometric Analysis , 2012, SIAM J. Numer. Anal..

[11]  Parviz Moin,et al.  B-Spline Method and Zonal Grids for Simulations of Complex Turbulent Flows , 1997 .

[12]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[13]  Hyun-Jung Kim,et al.  Isogeometric analysis for trimmed CAD surfaces , 2009 .

[14]  Dominik Schillinger,et al.  The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis , 2012 .

[15]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[16]  Do Wan Kim,et al.  Maximum principle and convergence analysis for the meshfree point collocation method , 2006, SIAM J. Numer. Anal..

[17]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[18]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[19]  Peter Wriggers,et al.  A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method , 2012 .

[20]  R. L. Taylor Isogeometric analysis of nearly incompressible solids , 2011 .

[21]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[22]  Luca F. Pavarino,et al.  Isogeometric Schwarz preconditioners for linear elasticity systems , 2013 .

[23]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[24]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[25]  Anath Fischer,et al.  Integrated mechanically based CAE system using B-Spline finite elements , 2000, Comput. Aided Des..

[26]  Peter Wriggers,et al.  Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .

[27]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[28]  Jiun-Shyan Chen,et al.  Reproducing kernel enhanced local radial basis collocation method , 2008 .

[29]  Ralf-Peter Mundani,et al.  A Review of the Finite Cell Method for Nonlinear Structural Analysis of Complex CAD and Image-Based Geometric Models , 2018, 1807.01285.

[30]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[31]  Rida T. Farouki,et al.  The Bernstein polynomial basis: A centennial retrospective , 2012, Comput. Aided Geom. Des..

[32]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[33]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[34]  Alessandro Reali,et al.  Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .

[35]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[36]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[37]  Carsten Burstedde,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011, SIAM J. Sci. Comput..

[38]  Y. Bazilevs,et al.  Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method , 2012 .

[39]  Martin H. Sadd,et al.  Elasticity: Theory, Applications, and Numerics , 2004 .

[40]  Victor M. Calo,et al.  The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers , 2012 .

[41]  Ernst Rank,et al.  The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics , 2012 .

[42]  John A. Evans,et al.  Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem , 2012 .

[43]  Luca F. Pavarino,et al.  BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .

[44]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[45]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[46]  E. Rank Adaptive remeshing and h-p domain decomposition , 1992 .

[47]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[48]  Jiun-Shyan Chen,et al.  Error analysis of collocation method based on reproducing kernel approximation , 2011 .

[49]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[50]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[51]  B. Finlayson The method of weighted residuals and variational principles : with application in fluid mechanics, heat and mass transfer , 1972 .

[52]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[53]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[54]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[55]  Fehmi Cirak,et al.  Subdivision-stabilised immersed b-spline finite elements for moving boundary flows , 2012 .

[56]  D. Funaro,et al.  Spline approximation of advection-diffusion problems using upwind type collocation nodes , 1999 .

[57]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[58]  G. Fairweather,et al.  Orthogonal spline collocation methods for partial di erential equations , 2001 .

[59]  O. C. Zienkiewicz,et al.  The finite element method, fourth edition; volume 2: solid and fluid mechanics, dynamics and non-linearity , 1991 .

[60]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[61]  Robert L. Taylor,et al.  Convergence of an efficient local least-squares fitting method for bases with compact support , 2012 .

[62]  Bert Jüttler,et al.  Isogeometric simulation of turbine blades for aircraft engines , 2012, Comput. Aided Geom. Des..

[63]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[64]  Parviz Moin,et al.  Zonal Embedded Grids for Numerical Simulations of Wall-Bounded Turbulent Flows , 1996 .

[65]  Thomas J. R. Hughes,et al.  A simple scheme for developing ‘upwind’ finite elements , 1978 .

[66]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[67]  Jianmin Zheng,et al.  Freeform-based form feature modeling using a hierarchical & multi-resolution NURBS method , 2010, VRCAI '10.

[68]  Victor M. Calo,et al.  The Cost of Continuity: Performance of Iterative Solvers on Isogeometric Finite Elements , 2012, SIAM J. Sci. Comput..

[69]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[70]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[71]  T. Hughes,et al.  A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .

[72]  Samuel N. Jator,et al.  A high order B-spline collocation method for linear boundary value problems , 2007, Appl. Math. Comput..

[73]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[74]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[75]  Thomas J. R. Hughes,et al.  Isogeometric Analysis for Topology Optimization with a Phase Field Model , 2012 .

[76]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[77]  Ernst Rank,et al.  Geometric modeling, isogeometric analysis and the finite cell method , 2012 .

[78]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[79]  Gene H. Golub,et al.  Matrix computations , 1983 .

[80]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[81]  Eitan Grinspun,et al.  Natural hierarchical refinement for finite element methods , 2003 .

[82]  Richard W. Johnson Higher order B-spline collocation at the Greville abscissae , 2005 .

[83]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[84]  Stephen Demko,et al.  On the existence of interpolating projections onto spline spaces , 1985 .

[85]  Wing Kam Liu,et al.  Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation , 1979 .

[86]  Lihua Wang,et al.  Subdomain radial basis collocation method for heterogeneous media , 2009 .

[87]  Ralf-Peter Mundani,et al.  The finite cell method for geometrically nonlinear problems of solid mechanics , 2010 .

[88]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[89]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[90]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[91]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[92]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[93]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[94]  Alessandro Reali,et al.  Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .

[95]  Jiun-Shyan Chen,et al.  Weighted radial basis collocation method for boundary value problems , 2007 .

[96]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[97]  C. D. Boor,et al.  Collocation at Gaussian Points , 1973 .

[98]  Douglas N. Arnold,et al.  On the asymptotic convergence of collocation methods , 1983 .

[99]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[100]  A. Shapiro,et al.  A new collocation method for the solution of the convection-dominated transport equation , 1979 .

[101]  R. D. Russell,et al.  A comparison of global methods for linear two-point boundary value problems , 1975 .

[102]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[103]  O. Botella,et al.  A high‐order mass‐lumping procedure for B‐spline collocation method with application to incompressible flow simulations , 2003 .

[104]  J. Oden Finite Elements: A Second Course , 1983 .

[105]  F. Cirak,et al.  A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .

[106]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[107]  Ju Liu,et al.  Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..

[108]  Richard W. Johnson,et al.  A B-spline collocation method for solving the incompressible Navier-Stokes equations using an ad hoc method: the Boundary Residual method , 2005 .

[109]  K. Höllig Finite element methods with B-splines , 1987 .

[110]  D. Arnold,et al.  On the Asymptotic Convergence of Spline Collocation Methods for Partial Differential Equations , 1984 .

[111]  Malcolm A. Sabin,et al.  Analysis and Design of Univariate Subdivision Schemes , 2010, Geometry and Computing.

[112]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[113]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[114]  H. Yserentant On the multi-level splitting of finite element spaces , 1986 .

[115]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[116]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[117]  P. M. Prenter Splines and variational methods , 1975 .

[118]  R. Moser,et al.  Two-Dimensional Mesh Embedding for B-spline Methods , 1998 .

[119]  Manfred Bischoff,et al.  Numerical efficiency, locking and unlocking of NURBS finite elements , 2010 .

[120]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[121]  O. Botella,et al.  On a collocation B-spline method for the solution of the Navier-Stokes equations , 2002 .

[122]  Ole Sigmund,et al.  Isogeometric shape optimization of photonic crystals via Coons patches , 2011 .

[123]  N. Aluru A point collocation method based on reproducing kernel approximations , 2000 .

[124]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[125]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .