Molecular aspects of bacterial nanocellulose biosynthesis

Bacterial nanocellulose (BNC) produced by aerobic bacteria is a biopolymer with sophisticated technical properties. Although the potential for economically relevant applications is huge, the cost of BNC still limits its application to a few biomedical devices and the edible product Nata de Coco, made available by traditional fermentation methods in Asian countries. Thus, a wider economic relevance of BNC is still dependent on breakthrough developments on the production technology. On the other hand, the development of modified strains able to overproduce BNC with new properties – e.g. porosity, density of fibres crosslinking, mechanical properties, etc. – will certainly allow to overcome investment and cost production issues and enlarge the scope of BNC applications. This review discusses current knowledge about the molecular basis of BNC biosynthesis, its regulations and, finally, presents a perspective on the genetic modification of BNC producers made possible by the new tools available for genetic engineering.

[1]  D. Michaeli,et al.  Control of cellulose synthesis Acetobacter xylinum. A unique guanyl oligonucleotide is the immediate activator of the cellulose synthase , 1986 .

[2]  Gidley,et al.  In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites , 1999, The Plant Journal.

[3]  M. I. Setyawati,et al.  Self-immobilized recombinant Acetobacter xylinum for biotransformation , 2009 .

[4]  D. Amikam,et al.  The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. , 1990, The Journal of biological chemistry.

[5]  Peer Bork,et al.  SMART: a web-based tool for the study of genetically mobile domains , 2000, Nucleic Acids Res..

[6]  R. Singhal,et al.  Microbial Cellulose: Fermentative Production and Applications , 2009 .

[7]  I. Tanaka,et al.  Structure of bacterial cellulose synthase subunit D octamer with four inner passageways , 2019 .

[8]  J. M. Dow,et al.  The CRP/FNR family protein Bcam1349 is a c‐di‐GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia , 2011, Molecular microbiology.

[9]  J. Blatny,et al.  A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon , 1994, Journal of bacteriology.

[10]  M. Tien,et al.  AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769. , 2016, Enzyme and microbial technology.

[11]  M. Tien,et al.  Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis , 2013, Journal of bacteriology.

[12]  B. Giese,et al.  Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. , 2004, Genes & development.

[13]  Robert D. Finn,et al.  Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins , 1999, Nucleic Acids Res..

[14]  D. Amikam,et al.  Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. , 2001, FEMS microbiology letters.

[15]  K. Tajima,et al.  Cloning and sequencing of the beta-glucosidase gene from Acetobacter xylinum ATCC 23769. , 2001, DNA research : an international journal for rapid publication of reports on genes and genomes.

[16]  Markus Meuwly,et al.  Allosteric Control of Cyclic di-GMP Signaling* , 2006, Journal of Biological Chemistry.

[17]  M. Tien,et al.  Isolation and Characterization of Two Cellulose Morphology Mutants of Gluconacetobacter hansenii ATCC23769 Producing Cellulose with Lower Crystallinity , 2015, PloS one.

[18]  J. Sugiyama,et al.  Formation of Highly Twisted Ribbons in a Carboxymethylcellulase Gene-Disrupted Strain of a Cellulose-Producing Bacterium , 2012, Journal of bacteriology.

[19]  Huaping Wang,et al.  Functionalized bacterial cellulose derivatives and nanocomposites. , 2014, Carbohydrate polymers.

[20]  A. Margaritis,et al.  Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals , 2017, Critical reviews in biotechnology.

[21]  R. Brown,et al.  Characterization of an acsD disruption mutant provides additional evidence for the hierarchical cell-directed self-assembly of cellulose in Gluconacetobacter xylinus , 2014, Cellulose.

[22]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[23]  S. Horinouchi,et al.  Control of Acetic Acid Fermentation by Quorum Sensing via N-Acylhomoserine Lactones in Gluconacetobacter intermedius , 2008, Journal of bacteriology.

[24]  Athanasios Mantalaris,et al.  More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. , 2014, Macromolecular bioscience.

[25]  Diane McDougald,et al.  Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal , 2011, Nature Reviews Microbiology.

[26]  Cheng-Kang Lee,et al.  Enhancement of Cellulose Pellicle Production by Constitutively Expressing Vitreoscilla Hemoglobin in Acetobacter xylinum , 2006, Biotechnology progress.

[27]  Kyongbum Lee,et al.  Novel In Vivo-Degradable Cellulose-Chitin Copolymer from Metabolically Engineered Gluconacetobacter xylinus , 2010, Applied and Environmental Microbiology.

[28]  B. Bassler,et al.  Bacterial quorum-sensing network architectures. , 2009, Annual review of genetics.

[29]  C. Waters,et al.  A Tangled Web: Regulatory Connections between Quorum Sensing and Cyclic Di-GMP , 2012, Journal of bacteriology.

[30]  R. Hengge,et al.  The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. , 2009, Genes & development.

[31]  D. Coucheron A family of IS1031 elements in the genome of Acetobacter xylinum: nucleotide sequences and strain distribution , 1993, Molecular microbiology.

[32]  Felipe López-Isunza,et al.  The unified metabolism of Gluconacetobacter entanii in continuous and batch processes , 2007 .

[33]  U. Jenal,et al.  Cyclic di-GMP: second messenger extraordinaire , 2017, Nature Reviews Microbiology.

[34]  K. Matsushita,et al.  Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288 , 2015, Applied Microbiology and Biotechnology.

[35]  Tilman Schirmer C-di-GMP Synthesis: Structural Aspects of Evolution, Catalysis and Regulation. , 2016, Journal of molecular biology.

[36]  Rosfarizan Mohamad,et al.  Production and Status of Bacterial Cellulose in Biomedical Engineering , 2017, Nanomaterials.

[37]  R Mayer,et al.  Cellulose biosynthesis and function in bacteria. , 1991, Microbiological reviews.

[38]  Tom Ellis,et al.  Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain , 2016, Proceedings of the National Academy of Sciences.

[39]  C. Solano,et al.  Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose , 2002, Molecular microbiology.

[40]  Jacob L.W. Morgan,et al.  Crystallographic snapshot of cellulose synthesis and membrane translocation , 2012, Nature.

[41]  K. Kida,et al.  Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. , 2005, Journal of bioscience and bioengineering.

[42]  T. Nakai,et al.  Effects of Acetan on Production of Bacterial Cellulose by Acetobacter xylinum , 2002, Bioscience, biotechnology, and biochemistry.

[43]  M. Parsek,et al.  Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa , 2015, Proceedings of the National Academy of Sciences.

[44]  Micah J Florea,et al.  Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582 , 2016, Scientific Reports.

[45]  Fei Li,et al.  Revealing Differences in Metabolic Flux Distributions between a Mutant Strain and Its Parent Strain Gluconacetobacter xylinus CGMCC 2955 , 2014, PloS one.

[46]  D. Coucheron,et al.  An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production , 1991, Journal of bacteriology.

[47]  Cheng-Kang Lee,et al.  Knock-out of glucose dehydrogenase gene in Gluconacetobacter xylinus for bacterial cellulose production enhancement , 2015, Biotechnology and Bioprocess Engineering.

[48]  Duangjai Ochaikul,et al.  Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria , 2011, Annals of Microbiology.

[49]  P. Howell,et al.  Dimeric c-di-GMP Is Required for Post-translational Regulation of Alginate Production in Pseudomonas aeruginosa* , 2015, The Journal of Biological Chemistry.

[50]  Y. Masuo,et al.  VLDL/LDL acts as a drug carrier and regulates the transport and metabolism of drugs in the body , 2017, Scientific Reports.

[51]  W. Streit,et al.  GqqA, a novel protein in Komagataeibacter europaeus involved in bacterial quorum quenching and cellulose formation , 2016, Microbial Cell Factories.

[52]  Ramandeep,et al.  Vitreoscilla Hemoglobin , 2001, The Journal of Biological Chemistry.

[53]  Y. Wan,et al.  Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds , 2008 .

[54]  R. Brown,et al.  Localization of c-di-GMP-Binding Protein with the Linear Terminal Complexes of Acetobacter xylinum , 2001, Journal of bacteriology.

[55]  J. H. Boom,et al.  Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid , 1987, Nature.

[56]  G. Sundin,et al.  Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189. , 2018, Molecular plant pathology.

[57]  N. A. Rahman,et al.  Overview of Bacterial Cellulose Production and Application , 2014 .

[58]  Y. Sugano,et al.  Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001 , 2004, Applied Microbiology and Biotechnology.

[59]  J. Vogt,et al.  Setting the PAS, the role of circadian PAS domain proteins during environmental adaptation in plants , 2015, Front. Plant Sci..

[60]  S. Jia,et al.  Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation , 2018, Scientific Reports.

[61]  Andrew J. Schmidt,et al.  The Ubiquitous Protein Domain EAL Is a Cyclic Diguanylate-Specific Phosphodiesterase: Enzymatically Active and Inactive EAL Domains , 2005, Journal of bacteriology.

[62]  X. Chen,et al.  Mutation‐based selection and analysis of Komagataeibacter hansenii HDM1‐3 for improvement in bacterial cellulose production , 2016, Journal of applied microbiology.

[63]  Michael Y. Galperin,et al.  Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. , 2015, Trends in microbiology.

[64]  S. Bielecki,et al.  Comparative genomics of the Komagataeibacter strains—Efficient bionanocellulose producers , 2018, MicrobiologyOpen.

[65]  A. Filloux,et al.  Biofilms and c-di-GMP Signaling: Lessons from Pseudomonas aeruginosa and other Bacteria , 2016 .

[66]  J. Zimmer,et al.  A molecular description of cellulose biosynthesis. , 2015, Annual review of biochemistry.

[67]  Shin Kawano,et al.  Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: comparison of cellulose synthetic ability between strains. , 2002, DNA research : an international journal for rapid publication of reports on genes and genomes.

[68]  D. Amikam,et al.  Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: Complementation of cellulose-negative mutants by the UDPG pyrophosphorylase structural gene , 1989, Molecular and General Genetics MGG.

[69]  Zhao-Xun Liang,et al.  A flavin cofactor-binding PAS domain regulates c-di-GMP synthesis in AxDGC2 from Acetobacter xylinum. , 2009, Biochemistry.

[70]  S. Valla,et al.  Acetobacter xylinum contains several plasmids: Evidence for their involvement in cellulose formation , 2004, Archives of Microbiology.

[71]  T. Kondo,et al.  A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture. , 2016, Carbohydrate polymers.

[72]  Peter Ross,et al.  Three cdg Operons Control Cellular Turnover of Cyclic Di-GMP in Acetobacter xylinum: Genetic Organization and Occurrence of Conserved Domains in Isoenzymes , 1998, Journal of bacteriology.

[73]  I. Hwang,et al.  Bacterial quorum sensing and metabolic slowing in a cooperative population , 2014, Proceedings of the National Academy of Sciences.

[74]  H. Chang,et al.  Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells , 2005 .

[75]  Michael Y. Galperin,et al.  C‐di‐GMP: the dawning of a novel bacterial signalling system , 2005, Molecular microbiology.

[76]  J. Strap,et al.  Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria , 2015, Front. Microbiol..

[77]  R. Brown,et al.  Complete Genome Sequence of a Gluconacetobacter hansenii ATCC 23769 Isolate, AY201, Producer of Bacterial Cellulose and Important Model Organism for the Study of Cellulose Biosynthesis , 2016, Genome Announcements.

[78]  J. Strap,et al.  The Phytohormone Ethylene Enhances Cellulose Production, Regulates CRP/FNRKx Transcription and Causes Differential Gene Expression within the Bacterial Cellulose Synthesis Operon of Komagataeibacter (Gluconacetobacter) xylinus ATCC 53582 , 2015, Front. Microbiol..

[79]  Pei Yee Ho,et al.  Fermentation and metabolic characteristics of Gluconacetobacter oboediens for different carbon sources , 2010, Applied Microbiology and Biotechnology.

[80]  Michael Y. Galperin,et al.  Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger , 2013, Microbiology and Molecular Reviews.

[81]  Vizváryová,et al.  Transposons – the useful genetic tools , 2022 .

[82]  Vincent T. Lee,et al.  Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover , 2015, Proceedings of the National Academy of Sciences.

[83]  Complete genome sequence of the cellulose-producing strain Komagataeibacter nataicola RZS01 , 2017, Scientific Reports.

[84]  N. Tonouchi,et al.  Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[85]  M. Karp,et al.  Engineering and Characterization of Bacterial Nanocellulose Films as Low Cost and Flexible Sensor Material. , 2017, ACS applied materials & interfaces.

[86]  B. Neilan,et al.  Insertion of an E. coli lacZ gene in Acetobacter xylinus for the production of cellulose in whey. , 2004, FEMS microbiology letters.

[87]  U. Römling Cyclic di-GMP, an established secondary messenger still speeding up. , 2012, Environmental microbiology.

[88]  Jochen Zimmer,et al.  Mechanism of activation of bacterial cellulose synthase by cyclic-di-GMP , 2014, Nature Structural &Molecular Biology.

[89]  Shin Kawano,et al.  Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum. , 2013, Journal of bioscience and bioengineering.

[90]  V. Lee,et al.  Cyclic‐di‐GMP regulation of virulence in bacterial pathogens , 2018, Wiley interdisciplinary reviews. RNA.

[91]  T. Tolker-Nielsen,et al.  Reduced Intracellular c-di-GMP Content Increases Expression of Quorum Sensing-Regulated Genes in Pseudomonas aeruginosa , 2017, Front. Cell. Infect. Microbiol..

[92]  S. Chou,et al.  c-di-GMP Regulates Various Phenotypes and Insecticidal Activity of Gram-Positive Bacillus thuringiensis , 2018, Front. Microbiol..

[93]  R. Brown,et al.  Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose , 2016, Genome Announcements.

[94]  E. Gendaszewska-Darmach,et al.  Scaffolds for Chondrogenic Cells Cultivation Prepared from Bacterial Cellulose with Relaxed Fibers Structure Induced Genetically , 2018, Nanomaterials.

[95]  S. Bielecki,et al.  Molecular basis of cellulose biosynthesis disappearance in submerged culture of Acetobacter xylinum. , 2005, Acta biochimica Polonica.

[96]  Michael Y. Galperin,et al.  Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms , 2015, Journal of bacteriology.

[97]  M. Schramm,et al.  Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. , 1954, Journal of general microbiology.

[98]  S. Bielecki,et al.  Bacterial NanoCellulose Synthesis, Recent Findings , 2016 .

[99]  M. Rohde,et al.  The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix , 2001, Molecular microbiology.

[100]  S. Jia,et al.  Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production , 2013, Applied Microbiology and Biotechnology.

[101]  N. Tonouchi,et al.  Purification and Characterization of Exo-1, 4-β-Glucosidase from Acetobacter xylinum BPR2001 , 1998 .

[102]  K. Tajima,et al.  Effects of endogenous endo-beta-1,4-glucanase on cellulose biosynthesis in Acetobacter xylinum ATCC23769. , 2002, Journal of bioscience and bioengineering.

[103]  A. Brown XLIII.—On an acetic ferment which forms cellulose , 1886 .

[104]  S. Horinouchi,et al.  Identification and characterization of target genes of the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius. , 2009, Microbiology.

[105]  R. Brown,et al.  Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization , 1994, Journal of bacteriology.

[106]  K. Tajima,et al.  In Vivo Curdlan/Cellulose Bionanocomposite Synthesis by Genetically Modified Gluconacetobacter xylinus. , 2015, Biomacromolecules.

[107]  S. Bielecki,et al.  Factors affecting the yield and properties of bacterial cellulose , 2002, Journal of Industrial Microbiology and Biotechnology.

[108]  C PEAUD-LENOEL,et al.  [Biosynthesis of cellulose]. , 1960, Bulletin de la Societe de chimie biologique.

[109]  Mark Gomelsky,et al.  An Unorthodox Bacteriophytochrome from Rhodobacter sphaeroides Involved in Turnover of the Second Messenger c-di-GMP* , 2006, Journal of Biological Chemistry.

[110]  P. Siguier,et al.  Bacterial insertion sequences: their genomic impact and diversity , 2014, FEMS microbiology reviews.

[111]  D P Delmer,et al.  Cellulose biosynthesis. , 1995, The Plant cell.

[112]  I. Tanaka,et al.  Structural characterization of the Acetobacter xylinum endo‐β‐1,4‐glucanase CMCax required for cellulose biosynthesis , 2006, Proteins.

[113]  M. Gilles-Gonzalez,et al.  Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. , 2001, Biochemistry.

[114]  M. Gasson,et al.  Generation of a novel polysaccharide by inactivation of the aceP gene from the acetan biosynthetic pathway in Acetobacter xylinum. , 1999, Microbiology.

[115]  R. Brown,et al.  Cellulose biosynthesis: A model for understanding the assembly of biopolymers , 2000 .

[116]  D. Amikam,et al.  Genetic organization of the cellulose synthase operon in Acetobacter xylinum. , 1990, Proceedings of the National Academy of Sciences of the United States of America.