A Certified Reduced Basis Method for the Fokker--Planck Equation of Dilute Polymeric Fluids: FENE Dumbbells in Extensional Flow

In this paper we present a reduced basis method for the parametrized Fokker-Planck equation associated with evolution of finitely extensible nonlinear elastic (FENE) dumbbells in a Newtonian solvent for a (prescribed) extensional macroscale flow. We apply a proper orthogonal decomposition (POD)-greedy sampling procedure for the stable identification of optimal reduced basis spaces, and we develop a rigorous finite-time a posteriori bound for the error in the reduced basis prediction of the two outputs of interest—the optical anisotropy and the first normal stress difference. We present numerical results for stress-conformation hysteresis as a function of Weissenberg number and final time that demonstrate the rapid convergence of the reduced basis approximation and the effectiveness of the a posteriori error bounds.

[1]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[2]  Anke Lindner,et al.  How to obtain the elongational viscosity of dilute polymer solutions , 2003 .

[3]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[4]  W. Cazemier,et al.  Proper orthogonal decomposition and low dimensional models for turbulent flows , 1997 .

[5]  Gianluigi Rozza,et al.  Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Parabolic PDEs: Application to Real‐Time Bayesian Parameter Estimation , 2010 .

[6]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[7]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[8]  R. Keunings MICRO-MACRO METHODS FOR THE MULTISCALE SIMULATION OF VISCOELASTIC FLOW USING MOLECULAR MODELS OF KINETIC THEORY , 2004 .

[9]  David J. Knezevic A heterogeneous alternating−direction method for a micro−macro model of dilute polymeric fluids , 2008 .

[10]  Farit G. Avkhadiev,et al.  Unified Poincaré and Hardy inequalities with sharp constants for convex domains , 2007 .

[11]  Gareth H. McKinley,et al.  Deficiencies of FENE dumbbell models in describing the rapid stretching of dilute polymer solutions , 2001 .

[12]  Felix Otto,et al.  Multiscale simulations for suspensions of rod-like molecules , 2006, J. Comput. Phys..

[13]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[14]  Jan S. Hesthaven,et al.  Certified Reduced Basis Methods and Output Bounds for the Harmonic Maxwell's Equations , 2010, SIAM J. Sci. Comput..

[15]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[16]  Marco Picasso,et al.  Variance reduction methods for CONNFFESSIT-like simulations , 1999 .

[17]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[18]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[19]  Marco Dressler,et al.  Computational Rheology , 2002 .

[20]  Werner C. Rheinboldt,et al.  On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations , 1983 .

[21]  A. Noor Recent advances in reduction methods for nonlinear problems. [in structural mechanics , 1981 .

[22]  Endre Süli,et al.  Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift , 2009 .

[23]  D E Smith,et al.  Single polymer dynamics in an elongational flow. , 1997, Science.

[24]  Vincent Legat,et al.  On the hysteretic behaviour of dilute polymer solutions in relaxation following extensional flow , 1999 .

[25]  H. R. Warner,et al.  Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells , 1972 .

[26]  Benjamin Jourdain,et al.  On a variance reduction technique for micro–macro simulations of polymeric fluids , 2004 .

[27]  Cédric Chauvière,et al.  Simulation of complex viscoelastic flows using the Fokker–Planck equation: 3D FENE model , 2004 .

[28]  Cédric Chauvière,et al.  Simulation of dilute polymer solutions using a Fokker–Planck equation , 2004 .

[29]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[30]  Gareth H. McKinley,et al.  A new model for dilute polymer solutions in flows with strong extensional components , 2002 .

[31]  Charbel Farhat,et al.  On-Demand CFD-Based Aeroelastic Predictions Using a Database of Reduced-Order Bases and Models , 2009 .

[32]  T. A. Porsching,et al.  The reduced basis method for initial value problems , 1987 .

[33]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[34]  P. Stern,et al.  Automatic choice of global shape functions in structural analysis , 1978 .

[35]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[36]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[37]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[38]  Gareth H. McKinley,et al.  Relaxation of dilute polymer solutions following extensional flow 1 Dedicated to the memory of Profe , 1998 .

[39]  Tony Lelievre,et al.  A variance reduction method for parametrized stochastic differential equations using the reduced basis paradigm , 2009, 0906.3600.

[40]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[41]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .