Visualization of multi-algorithm clustering for better economic decisions - The case of car pricing

Clustering decisions frequently arise in business applications such as recommendations concerning products, markets, human resources, etc. Currently, decision makers must analyze diverse algorithms and parameters on an individual basis in order to establish preferences on the decision-making issues they face; because there is no supportive model or tool which enables comparing different result-clusters generated by these algorithms and parameters combinations. The Multi-Algorithm-Voting (MAV) methodology enables not only visualization of results produced by diverse clustering algorithms, but also provides quantitative analysis of the results. The current research applies MAV methodology to the case of recommending new-car pricing. The findings illustrate the impact and the benefits of such decision support system.

[1]  Michael Q. Zhang,et al.  Current Topics in Computational Molecular Biology , 2002 .

[2]  H. Abdi Discriminant Correspondence Analysis , 2006 .

[3]  F. Verboven,et al.  Car price differentials in the European Union: and economic analysis , 2000 .

[4]  Padhraic Smyth,et al.  Model-Based Clustering and Visualization of Navigation Patterns on a Web Site , 2003, Data Mining and Knowledge Discovery.

[5]  Ben Shneiderman,et al.  Interactively Exploring Hierarchical Clustering Results , 2003 .

[6]  Carlos Henggeler Antunes,et al.  A multicriteria decision support system for housing evaluation , 2007 .

[7]  YongSeog Kim,et al.  Weighted order-dependent clustering and visualization of web navigation patterns , 2007, Decis. Support Syst..

[8]  P. Goldberg,et al.  The Effects of the Corporate Average Fuel Efficiency Standards , 1996 .

[9]  Israel Spiegler,et al.  Investigating diversity of clustering methods: An empirical comparison , 2007, Data Knowl. Eng..

[10]  D. McFadden,et al.  MIXED MNL MODELS FOR DISCRETE RESPONSE , 2000 .

[11]  Haim Levkowitz,et al.  From Visual Data Exploration to Visual Data Mining: A Survey , 2003, IEEE Trans. Vis. Comput. Graph..

[12]  Robin H. Lock 1993 New Car Data , 1993 .

[13]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[14]  Ran M. Bittmann,et al.  Decision‐making method using a visual approach for cluster analysis problems; indicative classification algorithms and grouping scope , 2007, Expert Syst. J. Knowl. Eng..

[15]  Mirsad Hadzikadic,et al.  Application of complex adaptive systems to pricing of reproducible information goods , 2008, Decis. Support Syst..

[16]  Adi Raveh,et al.  Co-plot: A graphic display method for geometrical representations of MCDM , 2000, Eur. J. Oper. Res..

[17]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[18]  Israel Spiegler,et al.  Data Mining by Means of Binary Representation: A Model for Similarity and Clustering , 2002, Inf. Syst. Frontiers.

[19]  Jing Zhang,et al.  Factor-analysis based anomaly detection and clustering , 2006, Decis. Support Syst..

[20]  Tao Jiang,et al.  Algorithmic Approaches to Clustering Gene Expression Data , 2002 .

[21]  J. Farris,et al.  An Introduction to Numerical Classification , 1976 .

[22]  George F. Estabrook,et al.  An Introduction to Numerical Classification. , 1976 .

[23]  Lydia Boudjeloud,et al.  Visual Interactive Evolutionary Algorithm for High Dimensional Data Clustering and Outlier Detection , 2005, PAKDD.

[24]  Steven Berry,et al.  Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market , 1998, Journal of Political Economy.

[25]  Neil Salkind Encyclopedia of Measurement and Statistics , 2006 .

[26]  Ben Shneiderman,et al.  A Rank-by-Feature Framework for Interactive Exploration of Multidimensional Data , 2005, Inf. Vis..

[27]  Thomas R. Shultz,et al.  Modeling Cognitive Development on Balance Scale Phenomena , 2004, Machine Learning.

[28]  Thomas F. Golob,et al.  A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles , 1996 .

[29]  Andreas Rudolph,et al.  Techniques of Cluster Algorithms in Data Mining , 2002, Data Mining and Knowledge Discovery.

[30]  Sébastien Thomassey,et al.  A hybrid sales forecasting system based on clustering and decision trees , 2006, Decis. Support Syst..

[31]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[32]  Steven T. Berry,et al.  Automobile Prices in Market Equilibrium , 1995 .