Adenosine Stress and Rest T1 Mapping Can Differentiate Between Ischemic, Infarcted, Remote, and Normal Myocardium Without the Need for Gadolinium Contrast Agents

[1]  S. K. White,et al.  Noncontrast myocardial T1 mapping using cardiovascular magnetic resonance for iron overload , 2015, Journal of magnetic resonance imaging : JMRI.

[2]  J. Francis,et al.  Adenosine stress native T1 mapping in severe aortic stenosis: evidence for a role of the intravascular compartment on myocardial T1 values , 2014, Journal of Cardiovascular Magnetic Resonance.

[3]  E. Nagel,et al.  Aortic Stiffness and Interstitial Myocardial Fibrosis by Native T1 Are Independently Associated With Left Ventricular Remodeling in Patients With Dilated Cardiomyopathy , 2014, Hypertension.

[4]  M. Robson,et al.  Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents , 2014, Journal of Cardiovascular Magnetic Resonance.

[5]  M. Robson,et al.  Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement , 2013, Journal of Cardiovascular Magnetic Resonance.

[6]  Stefan Neubauer,et al.  T(1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. , 2013, JACC. Cardiovascular imaging.

[7]  M. Robson,et al.  Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. , 2013, JACC. Cardiovascular imaging.

[8]  Andrew S Flett,et al.  Human non-contrast T1 values and correlation with histology in diffuse fibrosis , 2013, Heart.

[9]  S. K. White,et al.  Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI , 2013, Journal of Cardiovascular Magnetic Resonance.

[10]  Stefan Neubauer,et al.  Myocardial Tissue Characterization Using Magnetic Resonance Noncontrast T1 Mapping in Hypertrophic and Dilated Cardiomyopathy , 2012, Circulation. Cardiovascular imaging.

[11]  M. Czubryt Common threads in cardiac fibrosis, infarct scar formation, and wound healing , 2012, Fibrogenesis & tissue repair.

[12]  M. Robson,et al.  Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance , 2012, Journal of Cardiovascular Magnetic Resonance.

[13]  M. Robson,et al.  Myocardial oxygenation in coronary artery disease: insights from blood oxygen level-dependent magnetic resonance imaging at 3 tesla. , 2012, Journal of the American College of Cardiology.

[14]  M. Robson,et al.  Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction , 2012, Journal of Cardiovascular Magnetic Resonance.

[15]  Peter Kellman,et al.  Myocardial T1 and extracellular volume fraction mapping at 3 tesla , 2011, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[16]  E. Nagel,et al.  High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. , 2011, Journal of the American College of Cardiology.

[17]  Stefan Neubauer,et al.  Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold , 2010, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[18]  Jie Zheng,et al.  Roles of myocardial blood volume and flow in coronary artery disease: an experimental MRI study at rest and during hyperemia , 2010, European Radiology.

[19]  Jie Zheng,et al.  Myocardial blood volume is associated with myocardial oxygen consumption: an experimental study with cardiac magnetic resonance in a canine model. , 2009, JACC. Cardiovascular imaging.

[20]  Michael Salerno,et al.  Noninvasive assessment of myocardial perfusion. , 2009, Circulation. Cardiovascular imaging.

[21]  Stefan K. Piechnik,et al.  Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation , 2008, NeuroImage.

[22]  S. Plein,et al.  Myocardial T1 mapping: Application to patients with acute and chronic myocardial infarction , 2007, Magnetic resonance in medicine.

[23]  Haosen Zhang,et al.  Quantification of myocardial blood volume during dipyridamole and doubtamine stress: a perfusion CMR study. , 2007, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[24]  S. Martinoff,et al.  Adenosine myocardial contrast echo in intermediate severity coronary stenoses: a prospective two-center study , 2007, The International Journal of Cardiovascular Imaging.

[25]  S. Schoenberg,et al.  Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. , 2006, European heart journal.

[26]  S. Kaul,et al.  Changes in myocardial blood volume over a wide range of coronary driving pressures: role of capillaries beyond the autoregulatory range , 2004, Heart.

[27]  W. Bauer,et al.  Neue Ansätze der Magnetresonanztomographie zur Beschreibung myokardialer Mikrozirkulationsparameter am Menschen , 2003, Herz.

[28]  W. Bauer,et al.  [Myocardial microcirculation in humans--new approaches using MRI]. , 2003, Herz.

[29]  S. Kaul,et al.  Changes in myocardial blood volume with graded coronary stenosis. , 1997, The American journal of physiology.