Step-like enhancement of luminescence quantum yield of silicon nanocrystals.

Carrier multiplication by generation of two or more electron-hole pairs following the absorption of a single photon may lead to improved photovoltaic efficiencies and has been observed in nanocrystals made from a variety of semiconductors, including silicon. However, with few exceptions, these reports have been based on indirect ultrafast techniques. Here, we present evidence of carrier multiplication in closely spaced silicon nanocrystals contained in a silicon dioxide matrix by measuring enhanced photoluminescence quantum yield. As the photon energy increases, the quantum yield is expected to remain constant, or to decrease as a result of new trapping and recombination channels being activated. Instead, we observe a step-like increase in quantum yield for larger photon energies that is characteristic of carrier multiplication. Modelling suggests that carrier multiplication is occurring with high efficiency and close to the energy conservation limit.

[1]  R. R. Cooney,et al.  Breaking the Phonon Bottleneck for Holes in Semiconductor Quantum Dots , 2007 .

[2]  Leonid Khriachtchev Silicon Nanophotonics: Basic Principles, Current Status and Perspectives , 2008 .

[3]  T. Gregorkiewicz,et al.  Increased carrier generation rate in Si nanocrystals in SiO2 investigated by induced absorption , 2011 .

[4]  A. Nozik Quantum dot solar cells , 2002 .

[5]  C. Delerue,et al.  Fast relaxation of hot carriers by impact ionization in semiconductor nanocrystals: Role of defects , 2009 .

[6]  T. Gregorkiewicz,et al.  Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications , 2008 .

[7]  S. Wawilow Die Fluoreszenzausbeute von Farbstofflösungen als Funktion der Wellenlänge des anregenden Lichtes. II , 1927 .

[8]  T. Hanrath,et al.  In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. , 2008, Nano letters.

[9]  J. Valenta,et al.  Light‐Emission Performance of Silicon Nanocrystals Deduced from Single Quantum Dot Spectroscopy , 2008 .

[10]  J. Jorné,et al.  Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen , 1999 .

[11]  P. Guyot-Sionnest,et al.  Slow Electron Cooling in Colloidal Quantum Dots , 2008, Science.

[12]  K. Blaum,et al.  Recent developments in ion detection techniques for Penning trap mass spectrometry at TRIGA-TRAP , 2009 .

[13]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[14]  Martin A. Green,et al.  Third generation photovoltaics , 2002, 2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601).

[15]  J. C. Muller,et al.  Silicon nanocrystals as light converter for solar cells , 2004 .

[16]  V. Pilla,et al.  Quantum yield excitation spectrum (UV-visible) of CdSe/ZnS core-shell quantum dots by thermal lens spectrometry , 2010 .

[17]  D. L. Dexter Possibility of Luminescent Quantum Yields Greater than Unity , 1957 .

[18]  A. Nozik,et al.  Multiexciton generation by a single photon in nanocrystals. , 2006, Nano letters.

[19]  Werner,et al.  Novel optimization principles and efficiency limits for semiconductor solar cells. , 1994, Physical review letters.

[20]  T. Gregorkiewicz,et al.  Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. , 2010, Nature nanotechnology.

[21]  Paul L. McEuen,et al.  Supporting Online Material for Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes , 2009 .

[22]  Jürgen H. Werner,et al.  Solar cell efficiency and carrier multiplication in Si1−xGex alloys , 1998 .

[23]  G Van Tendeloo,et al.  Classification and control of the origin of photoluminescence from Si nanocrystals. , 2008, Nature nanotechnology.

[24]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .

[25]  M. Fujii,et al.  Size dependence of photoluminescence quantum efficiency of Si nanocrystals , 2006 .

[26]  R. Schaller,et al.  Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. , 2006, Nano letters.

[27]  F. Priolo,et al.  Enhanced down conversion of photons emitted by photoexcited Er x Y 2-x Si 2 O 7 films grown on silicon , 2010 .

[28]  Barbara K. Hughes,et al.  Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. , 2010, Nano letters.

[29]  A. Meijerink,et al.  Visible quantum cutting in LiGdF4:Eu3+ through downconversion , 1999, Science.

[30]  Keiichi Yamamoto,et al.  Size-dependent near-infrared photoluminescence spectra of Si nanocrystals embedded in SiO2 matrices , 1997 .

[31]  T. Gregorkiewicz,et al.  Saturation of luminescence from Si nanocrystals embedded in SiO2 , 2010 .

[32]  B. Parkinson,et al.  Multiple Exciton Collection in a Sensitized Photovoltaic System , 2010, Science.

[33]  A. Patz,et al.  Role of Oxygen , 1981 .

[34]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.