Correlated Electron Materials and Field Effect Transistors for Logic: A Review

Correlated electron systems are among the centerpieces of modern condensed matter sciences, where many interesting physical phenomena, such as metal-insulator transition and high-T c superconductivity appear. Recent efforts have been focused on electrostatic doping of such materials to probe the underlying physics without introducing disorder as well as to build field-effect transistors that may complement conventional semiconductor metal-oxide-semiconductor field effect transistor (MOSFET) technology. This review focuses on metal-insulator transition mechanisms in correlated electron materials and three-terminal field effect devices utilizing such correlated oxides as the channel layer. We first describe how electron-disorder interaction, electron-phonon interaction, and/or electron correlation in solids could modify the electronic properties of materials and lead to metal-insulator transitions. Then we analyze experimental efforts toward utilizing these transitions in field effect transistors and their underlying principles. It is pointed out that correlated electron systems show promise among these various materials displaying phase transitions for logic technologies. Furthermore, novel phenomena emerging from electronic correlation could enable new functionalities in field effect devices. We then briefly review unconventional electrostatic gating techniques, such as ionic liquid gating and ferroelectric gating, which enables ultra large carrier accumulation density in the correlated materials which could in turn lead to phase transitions. The review concludes with a brief discussion on the prospects and suggestions for future research directions in correlated oxide electronics for information processing.

[1]  R. Thorne Charge‐Density‐Wave Conductors , 1996 .

[2]  Tokura,et al.  Variation of optical gaps in perovskite-type 3d transition-metal oxides. , 1993, Physical review. B, Condensed matter.

[3]  J. Jopling,et al.  High performance 32nm logic technology featuring 2nd generation high-k + metal gate transistors , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[4]  Suzuki,et al.  Metal-insulator transition in La1-xSrxTiO3 and Y1-xCaxTiO3 investigated by specific-heat measurements. , 1993, Physical review. B, Condensed matter.

[5]  R. Mark Wilson,et al.  Metal–insulator transition in vanadium dioxide , 2009 .

[6]  Nazzal,et al.  Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap. , 1992, Physical review. B, Condensed matter.

[7]  Fisher,et al.  Midgap states in doped Mott insulators in infinite dimensions. , 1995, Physical review. B, Condensed matter.

[8]  Thorne,et al.  Field-effect modulation of charge-density-wave transport in NbSe3 and TaS3. , 1995, Physical review letters.

[9]  Chen,et al.  Electronic states in La2-xSrxCuO4+ delta probed by soft-x-ray absorption. , 1991, Physical review letters.

[10]  H. Koinuma,et al.  Domain structure of epitaxial CaHfO3 gate insulator films on SrTiO3 , 2004 .

[11]  H. Ohta,et al.  Field-modulated thermopower in SrTiO3-based field-effect transistors with amorphous 12CaO⋅7Al2O3 glass gate insulator , 2009 .

[12]  Jun‐Bo Yoon,et al.  Fabrication and characterization of a nanoelectromechanical switch with 15-nm-thick suspension air gap , 2008 .

[13]  G. Grüner,et al.  Onset of charge-density-wave conduction: Switching and hysteresis in Nb Se 3 , 1982 .

[14]  L. Tjeng,et al.  REDUCTION OF COULOMB AND CHARGE-TRANSFER ENERGIES IN OXIDE FILMS ON METALS , 1999 .

[15]  Yu Huang,et al.  Sub-100 nm channel length graphene transistors. , 2010, Nano letters.

[16]  A. Mauger,et al.  Magnetic properties of CeyFe4−xNixSb12CeyFe4−xNixSb12 , 2005 .

[17]  S. Ha,et al.  Adaptive oxide electronics: A review , 2011 .

[18]  A. Ionescu,et al.  Metal-Ferroelectric-Meta-Oxide-semiconductor field effect transistor with sub-60mV/decade subthreshold swing and internal voltage amplification , 2010, 2010 International Electron Devices Meeting.

[19]  Y. Tokura,et al.  Field-effect transistor on SrTiO 3 with sputtered Al 2 O 3 gate insulator , 2013 .

[20]  N. F. Mott,et al.  Conduction in non-Crystalline systems: IV. Anderson localization in a disordered lattice , 1970 .

[21]  R. Peierls,et al.  Quantum theory of solids , 1956 .

[22]  M. Medarde,et al.  Structural, magnetic and electronic properties of perovskites (R = rare earth) , 1997 .

[23]  Doping-driven Mott transition in the one-band Hubbard model , 2006, cond-mat/0610401.

[24]  John E. Anthony,et al.  Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. , 2008, Nature materials.

[25]  Kuiper,et al.  Character of holes in LixNi1-xO and their magnetic behavior. , 1989, Physical review letters.

[26]  M. Itoh,et al.  Electronic transport property of La2CuO4+δ(0 , 1994 .

[27]  Alexander Pergament,et al.  Electrical switching and Mott transition in VO2 , 2000 .

[28]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[29]  Sawatzky,et al.  Electronic structure of Bi2Sr2Ca1-xYxCu2O8+ delta : Cu 2p x-ray-photoelectron spectra and occupied and unoccupied low-energy states. , 1994, Physical review. B, Condensed matter.

[30]  A. Aspect,et al.  Direct observation of Anderson localization of matter waves in a controlled disorder , 2008, Nature.

[31]  Nevill Mott,et al.  The transition to the metallic state , 1961 .

[32]  R. Peierls,et al.  More Surprises in Theoretical Physics , 1992 .

[33]  Dopingn-type carriers by La substitution for Ba in theYBa2Cu3Oysystem , 2006, cond-mat/0608349.

[34]  Pulse-duration memory effect and deformable charge-density waves. , 1987, Physical review. B, Condensed matter.

[35]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[36]  R. Weaver Anderson localization of ultrasound , 1990 .

[37]  Zvi Ovadyahu,et al.  EVIDENCE FOR INTERACTIONS IN NONERGODIC ELECTRONIC TRANSPORT , 1998 .

[38]  Alain C. Diebold,et al.  2012 Updates to the International Technology Roadmap for Semiconductors (ITRS) Metrology Chapter | NIST , 2013 .

[39]  Hongtao Yuan,et al.  Discovery of superconductivity in KTaO₃ by electrostatic carrier doping. , 2011, Nature nanotechnology.

[40]  L. Boatner,et al.  Very low-temperature search for superconductivity in semiconducting KTaO3 , 1982 .

[41]  Hongtao Yuan,et al.  High‐Density Carrier Accumulation in ZnO Field‐Effect Transistors Gated by Electric Double Layers of Ionic Liquids , 2009 .

[42]  D. Sarma,et al.  Electronic structure of perovskite oxides, LaMO3 (M=Ti-Ni), from high-energy electron spectroscopic investigations , 1994 .

[43]  Shimpei Ono,et al.  Electric‐Field Control of the Metal‐Insulator Transition in Ultrathin NdNiO3 Films , 2010, Advanced materials.

[44]  D. Edwards,et al.  Comment on Hubbard's Theory of the Mott Transition , 1968 .

[45]  Dong-Wook Kim,et al.  Magnetic properties of insulating RTiO3 thin films , 2009 .

[46]  D. Khomskii,et al.  Charge ordering as alternative to Jahn-Teller distortion , 2007 .

[47]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[48]  Qin Meng Metal Insulator Transition , 2010 .

[49]  Yoseph Imry,et al.  Electron Glass Dynamics , 2010, 1010.5767.

[50]  Soumen Das,et al.  Solution processed Ni-doped TiO2 p-type channel in field effect transistor assembly with <10 nm thin Ba0.5Sr0.5TiO3 dielectric layer , 2011 .

[51]  Alan J. Heeger,et al.  Superconducting fluctuations and the Peierls instability in an organic solid , 1993 .

[52]  Hao Yan,et al.  Programmable nanowire circuits for nanoprocessors , 2011, Nature.

[53]  A. Stoneham,et al.  CONDUCTIVITY AND NEGATIVE-U FOR IONIC GRAIN-BOUNDARIES , 1983 .

[54]  N. Mott The mobility edge since 1967 , 1987 .

[55]  A Tanaka,et al.  Orbital-assisted metal-insulator transition in VO2. , 2005, Physical review letters.

[56]  A. Fujimori,et al.  Electronic structure of Mott–Hubbard-type transition-metal oxides , 2001 .

[57]  M. Kund,et al.  A study of the thermal expansion of isostructural organic radical cation salts κ-(BEDT-TTF)2Cu[N(CN)2]X (XBr, Cl, I) , 1995 .

[58]  J. Mannhart,et al.  Oxide Interfaces—An Opportunity for Electronics , 2010, Science.

[59]  T. Ohnishi,et al.  Metal-insulator transition in SrTiO3 induced by field effect , 2007 .

[60]  Alonso,et al.  Influence of carrier injection on the metal-insulator transition in electron- and hole-doped R1-xAxNiO3 perovskites. , 1995, Physical review. B, Condensed matter.

[62]  A. S. Cooper,et al.  Electron-hole doping of the metal-insulator transition compound RENiO3 , 1994 .

[63]  G. Grüner,et al.  The dynamics of charge-density waves , 1988 .

[64]  I. Inoue,et al.  Electrostatic carrier doping to perovskite transition-metal oxides , 2005 .

[65]  Ganguly,et al.  Evolution and the concomitant disappearance of high-Tc superconductivity with carrier concentration in the La2-xSrxCuO4- delta system (0.0 <= x <= 1.2): Crossover from a Mott insulator to a band metal. , 1990, Physical review. B, Condensed matter.

[66]  Torgeson,et al.  Magnetic properties of LaVO3. , 1992, Physical review. B, Condensed matter.

[67]  A. Neto,et al.  New directions in science and technology: two-dimensional crystals , 2011 .

[68]  A. Schrott,et al.  Mott transition field effect transistor , 1998 .

[69]  Byung-Gook Park,et al.  Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec , 2007, IEEE Electron Device Letters.

[70]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[71]  William F. Brinkman,et al.  Application of Gutzwiller's Variational Method to the Metal-Insulator Transition , 1970 .

[72]  Sawatzky,et al.  Anomalous transfer of spectral weight in doped strongly correlated systems. , 1991, Physical review letters.

[73]  Prospects for the Mott Transition Field Effect Transistor , 2001 .

[74]  J. Triscone,et al.  Field-effect experiments in NdBa2Cu3O7−δ ultrathin films using a SrTiO3 single-crystal gate insulator , 2003 .

[75]  J.E. Brewer,et al.  Emerging research logic devices , 2005, IEEE Circuits and Devices Magazine.

[76]  Y. Tokura,et al.  Field-effect transistor on SrTiO3 with sputtered Al2O3 gate insulator , 2003 .

[77]  Park,et al.  Resonant photoemission study of Nd2-xCexCuO4-y: Nature of electronic states near the Fermi level. , 1990, Physical review letters.

[78]  H. Koinuma,et al.  Single crystal SrTiO3 field-effect transistor with an atomically flat amorphous CaHfO3 gate insulator , 2004 .

[79]  Pouget,et al.  Comment on "VO2: Peierls or Mott-Hubbard? A view from band theory" , 1994, Physical Review Letters.

[80]  Gupta,et al.  Hopping conduction in insulating rf-sputtered zinc oxide films. , 1994, Physical review. B, Condensed matter.

[81]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[82]  Song,et al.  Photoexcitations in La2CuO4: 2-eV energy gap and long-lived defect states. , 1988, Physical review. B, Condensed matter.

[83]  K. Kudo,et al.  Ambipolar field-effect transistor characteristics of (BEDT-TTF)(TCNQ) crystals and metal-like conduction induced by a gate electric field , 2007 .

[84]  C. A. Murray,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[85]  Masashi Kawasaki,et al.  Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films , 2010 .

[86]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[87]  Matsumoto,et al.  Resonant photoemission study of CeO2. , 1994, Physical review. B, Condensed matter.

[88]  S. Ramanathan,et al.  Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions , 2011 .

[89]  Williams,et al.  Dielectric properties of sputtered SrTiO3 films. , 1994, Physical review. B, Condensed matter.

[90]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[91]  大友 明 Insulator-to-metal transition in ZnO by electric double layer gating , 2007 .

[92]  N F Mott,et al.  The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals , 1949 .

[93]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[94]  Masashi Kawasaki,et al.  Field-effect modulation of the transport properties of nondoped SrTiO3 , 2006 .

[95]  R. Loo,et al.  Record ION/IOFF performance for 65nm Ge pMOSFET and novel Si passivation scheme for improved EOT scalability , 2008, 2008 IEEE International Electron Devices Meeting.

[96]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[97]  Mathews,et al.  Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures , 1997, Science.

[98]  H. Koinuma,et al.  Step-flow growth of SrTiO3 thin films with a dielectric constant exceeding 104 , 1999 .

[99]  J. P. Remeika,et al.  Electronic Specific Heat of Metallic Ti-Doped V 2 O 3 , 1971 .

[100]  J. Perlstein,et al.  Semiconductor-to-Metal Transition in the Blue Potassium Molybdenum Bronze, K 0.30 Mo O 3 ; Example of a Possible Excitonic Insulator , 1972 .

[101]  C. Pfleiderer,et al.  Critical Behavior of the Conductivity of Si:P at the Metal-Insulator Transition under Uniaxial Stress , 1999, cond-mat/9905297.

[102]  A. Schrott,et al.  Mott Transition Field Effect Transistor: Experimental Results , 1999 .

[103]  D. Wiersma,et al.  Fifty years of Anderson localization , 2009 .

[104]  M. Passlack,et al.  Enhancement-Mode GaAs n-Channel MOSFET , 2006, IEEE Electron Device Letters.

[105]  Jochen Mannhart,et al.  Calculation of the Capacitances of Conductors -- Perspectives for the Optimization of Electronic Devices , 2009, 0902.4673.

[106]  H. Hwang,et al.  Subband structure of a two-dimensional electron gas formed at the polar surface of the strong spin-orbit perovskite KTaO3. , 2011, Physical review letters.

[107]  M. Gabay,et al.  Local switching of two-dimensional superconductivity using the ferroelectric field effect , 2006, Nature.

[108]  G. A. Thomas,et al.  Stress tuning of the metal-insulator transition at millikelvin temperatures , 1982 .

[109]  Walter J. Riker A Review of J , 2010 .

[110]  Hyun-Tak Kim,et al.  Observation of Mott Transition in VO_2 Based Transistors , 2003 .

[111]  Fleming,et al.  Observation of a pulse-duration memory effect in K0.30MoO3. , 1986, Physical review. B, Condensed matter.

[112]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[113]  H. Unoki,et al.  Dielectric Properties of SrTi O 3 at Low Temperatures , 1971 .

[114]  M. Beasley,et al.  Ferroelectric Field Effect in Epitaxial Thin Film Oxide SrCuO2/Pb(Zr0.52Ti0.48)O3 Heterostructures , 1995, Science.

[115]  H.-S. Philip Wong Beyond the conventional transistor , 2002, IBM J. Res. Dev..

[116]  Z. Ovadyahu Some finite temperature aspects of the Anderson transition , 1986 .

[117]  Nevill Mott,et al.  The theory of impurity conduction , 1961 .

[118]  F. Andrieu,et al.  Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible Tunnel FET performance , 2008, 2008 IEEE International Electron Devices Meeting.

[119]  T. Sato,et al.  Aluminum oxide films deposited in low pressure conditions by reactive pulsed dc magnetron sputtering , 2002 .

[120]  Toshikazu Yamada,et al.  Field-effect transistor based on KTaO3 perovskite , 2004 .

[121]  V. Martovitsky,et al.  Comparative study of Bi2201 single crystalsgrown from solution melt and in cavities formed in KCl , 1998 .

[122]  Adrian M. Ionescu,et al.  Tunnel field-effect transistors as energy-efficient electronic switches , 2011, Nature.

[123]  Nevill Mott,et al.  Conduction in non-crystalline systems , 1968 .

[124]  Masashi Kawasaki,et al.  Electric-field-induced superconductivity in an insulator. , 2008, Nature materials.

[125]  S. Stemmer,et al.  Probing the metal-insulator transition of NdNiO3 by electrostatic doping , 2011, 1110.4134.

[126]  Okada,et al.  Optical spectra in (La,Y)TiO3: Variation of Mott-Hubbard gap features with change of electron correlation and band filling. , 1995, Physical review. B, Condensed matter.

[127]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[128]  Tetsuo Takahashi,et al.  Electron-hole asymmetry in the superconductivity of doped BaFe 2 As 2 seen via the rigid chemical-potential shift in photoemission , 2011 .

[129]  K. Tsukagoshi,et al.  Electric-field-induced Mott transition in an organic molecular crystal , 2011 .

[130]  P. Edwards,et al.  The transition to the metallic state , 1982 .

[131]  J. Mannhart,et al.  Field-effect devices utilizing LaAlO3-SrTiO3 interfaces , 2012, 1201.5953.

[132]  Yu Huang,et al.  Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. , 2010, Nano letters.

[133]  J. C. Kieffer,et al.  Evidence for a structurally-driven insulator-to-metal transition in VO 2 : A view from the ultrafast timescale , 2004, cond-mat/0403214.

[134]  E. R. Pfeiffer,et al.  Superconducting transition temperatures of semiconducting SrTiO sub 3. , 1967 .

[135]  T. V. Ramakrishnan,et al.  The Metal-Nonmetal Transition: A Global Perspective , 1995 .

[136]  J. A. Misewich,et al.  A field effect transistor based on the Mott transition in a molecular layer , 1996 .

[137]  Toshio Atsuta,et al.  Kawasaki and I , 2007 .

[138]  Satoshi Okamoto,et al.  Electronic reconstruction at an interface between a Mott insulator and a band insulator , 2004, Nature.

[139]  A. Hebard,et al.  Experimental considerations in the quest for a thin-film superconducting field-effect transistor , 1987 .

[140]  Shriram Ramanathan,et al.  Hall carrier density and magnetoresistance measurements in thin-film vanadium dioxide across the metal-insulator transition , 2009, 1006.4376.

[141]  Ben-Chorin,et al.  Nonequilibrium transport and slow relaxation in hopping conductivity. , 1993, Physical review. B, Condensed matter.

[142]  Arthur F. Hebard,et al.  Electric field gating with ionic liquids , 2007 .

[143]  J. Delahaye,et al.  Slow conductance relaxation in insulating granular Al: evidence for screening effects. , 2011, Physical review letters.

[144]  Shriram Ramanathan,et al.  Studies on room-temperature electric-field effect in ionic-liquid gated VO 2 three-terminal devices , 2012 .

[145]  A. Schrott,et al.  Room-temperature oxide field-effect transistor with buried channel , 2000 .

[146]  F. d’Acapito,et al.  Direct observation of charge order in an epitaxial NdNiO3 film. , 2002, Physical review letters.

[147]  Masashi Kawasaki,et al.  Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors. , 2010, Journal of the American Chemical Society.

[148]  H. Hiraka,et al.  Zero-doping state and electron–hole asymmetry in an ambipolar cuprate , 2010 .

[149]  Chi H. Lee,et al.  Ultrafast polarization switching in thin-film ferroelectrics , 2004 .

[150]  A. Frydman,et al.  The Electron Glass , 2013 .

[151]  Z. Ovadyahu,et al.  Nonequilibrium field effect and memory in the electron glass , 2002 .

[152]  Oxide Electrodes for Buried-Channel Field Effect Transistors , 2001 .

[153]  Ben-Chorin,et al.  Anomalous field effect in gated Anderson insulators. , 1991, Physical review. B, Condensed matter.

[154]  H. Unoki,et al.  Dielectric Properties of SrTiO3at Low Temperatures , 1971 .

[155]  P. Edwards,et al.  Universality aspects of the metal-nonmetal transition in condensed media , 1978 .

[156]  Naoto Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[157]  M. Sing,et al.  Photoemission of a doped Mott insulator: spectral weight transfer and a qualitative Mott-Hubbard description. , 2009, Physical review letters.

[158]  Roberto Righini,et al.  Localization of light in a disordered medium , 1997, Nature.

[159]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[160]  K. Tsukagoshi,et al.  Strain-induced superconductor/insulator transition and field effect in a thin single crystal of molecular conductor , 2008 .

[161]  Jack Hellerstedt,et al.  Phase diagram of electrostatically doped SrTiO3. , 2011, Physical review letters.

[162]  C. Rao,et al.  Metal-Insulator Transitions Revisited , 1995 .

[163]  Ahn,et al.  Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7-x films , 1999, Science.

[164]  Sawatzky,et al.  Spectral-weight transfer: Breakdown of low-energy-scale sum rules in correlated systems. , 1993, Physical review. B, Condensed matter.

[165]  Mark A. Eriksson,et al.  Embracing the quantum limit in silicon computing , 2011, Nature.

[166]  Y. Tokura,et al.  Thermoelectric Properties of Electron-Doped KTaO3 , 2009 .

[167]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[168]  Allen M Goldman,et al.  Anomalous Field Effect in Ultrathin Films of Metals near the Superconductor-Insulator Transition , 1997 .

[169]  M. Gutzwiller,et al.  Correlation of Electrons in a Narrow s Band , 1965 .

[170]  J. Orenstein,et al.  Doped Mott insulators: Breaking through to the other side , 2010 .

[171]  A. Mirlin,et al.  Anderson Transitions , 2007, 0707.4378.

[172]  Allen,et al.  Band gaps and electronic structure of transition-metal compounds. , 1985, Physical review letters.

[173]  E. Arnold Disorder‐induced carrier localization in silicon surface inversion layers , 1974 .

[174]  S. Deleonibus,et al.  Co-integration of 2 mV/dec Subthreshold Slope Impact Ionization MOS (I-MOS) with CMOS , 2006, 2006 European Solid-State Device Research Conference.

[175]  Zhi-Xun Shen,et al.  Angle-resolved photoemission studies of the cuprate superconductors , 2002, cond-mat/0208504.

[176]  Wang,et al.  Out-of-plane conductivity in single-crystal YBa2Cu , 1988, Physical review. B, Condensed matter.

[177]  P. Molinié,et al.  Phase transitions in NbSe3 , 1976 .

[178]  L. Tjeng,et al.  Strongly reduced band gap in a correlated insulator in close proximity to a metal , 1997 .

[179]  Hyunhyub Ko,et al.  Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors , 2010, Nature.

[180]  K. Tsukagoshi,et al.  Field-induced carrier delocalization in the strain-induced mott insulating state of an organic superconductor. , 2009, Physical review letters.

[181]  Siddharth Rajan,et al.  A heterojunction modulation-doped Mott transistor , 2011, 1109.5299.

[182]  C. Rettner,et al.  Monolayer transistor using a highly ordered conjugated polymer as the channel. , 2006, Nano letters.

[183]  S. Katsumoto,et al.  Evidence for localization effects in compensated semiconductors , 1982 .

[184]  Tokura,et al.  Optical spectroscopy of the metal-insulator transition in NdNiO3. , 1995, Physical review. B, Condensed matter.

[185]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[186]  Jonas I. Goldsmith,et al.  Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.

[187]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[188]  Shoji Tanaka,et al.  Electrical Transport Properties in 2H-NbS2, -NbSe2, -TaS2 and -TaSe2 , 1982 .

[189]  A. Schrott,et al.  Ferroelectric field-effect transistor with a SrRuxTi1-xO3 channel , 2003 .

[190]  N. Singh,et al.  Germanium Nanowire Metal–Oxide–Semiconductor Field-Effect Transistor Fabricated by Complementary-Metal–Oxide–Semiconductor-Compatible Process , 2011, IEEE Transactions on Electron Devices.

[191]  Gyungock Kim,et al.  Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices , 2004 .

[192]  M. Maple,et al.  Superconducting critical temperature and electrical resistivity of the system Y1−xPrxBa2Cu3O6.95 (0⩽x⩽1) , 1992 .

[193]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[194]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[195]  Fred H. Pollak,et al.  Energy-Band Structure of Germanium and Silicon: The k [] p Method , 1966 .

[196]  H. Ohta,et al.  Electric-Field Modulation of Thermopower for the KTaO3 Field-Effect Transistors , 2009, 0910.3753.

[197]  Naoto Nagaosa,et al.  Interfaces of correlated electron systems: proposed mechanism for colossal electroresistance. , 2005, Physical review letters.

[198]  Takehiko Mori,et al.  Structural and electrical properties of (BEDT-TTF)(TCNQ) , 1986 .

[199]  P. W. Chapman,et al.  Electron Mobility in Semiconducting Strontium Titanate , 1967 .

[200]  T. Geballe,et al.  Current through SiO2 gate oxide and its low frequency fluctuations: Trapping on charged dangling bonds with negative Hubbard U , 2005 .

[201]  B. Batlogg,et al.  Ambipolar field-effect carrier injections in organic Mott insulators , 2004 .

[202]  D. Kwong,et al.  Ge n-MOSFETs on lightly doped substrates with high-/spl kappa/ dielectric and TaN gate , 2006, IEEE Electron Device Letters.

[203]  Dae-Hyun Kim,et al.  30 nm In0.7Ga0.3As Inverted-Type HEMTs with reduced gate leakage current for logic applications , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[204]  V. Vikhnin,et al.  The effects of defect system ordering in a weakly doped incipient ferroelectric (KTaO3): dielectric manifestation , 1995 .

[205]  Sahand Hormoz,et al.  Limits on vanadium oxide Mott metal–insulator transition field-effect transistors , 2010 .

[206]  P. Edwards,et al.  Phase separation in metal solutions and expanded fluid metals , 1981 .

[207]  J. Hubbard,et al.  Electron correlations in narrow energy bands. II. The degenerate band case , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[208]  Allen,et al.  VO2: Peierls or Mott-Hubbard? A view from band theory. , 1994, Physical review letters.