Digital holographic microscopy as a new technique for quantitative measurement of microstructural corrosion in austenitic stainless steel

Abstract The aim of this paper is to introduce reflective digital holographic microscopy (rDHM) as a new method for quantitative evaluation of corrosion. Despite the commonly-used evaluation methods, rDHM does not require scanning, while it measures the microstructural height profile of the corroded sample surface within a macroscale area. Based on the height profile across the corroded grain boundaries, a quantitative criterion is suggested to distinguish between intergranular and transgranular corrosion. The experimental results show the capability of rDHM to analyse the microstructural corrosion in AISI 304 stainless steel. The presented method can also be applied as a surface characterization method for analysis of a variety of metallurgic effects such as crystal elasticity and crystal orientation.

[1]  Michael F. McGuire,et al.  Stainless Steels for Design Engineers , 2008 .

[2]  J. Goodman Introduction to Fourier optics , 1969 .

[3]  D. Blackwood,et al.  Real time pit initiation studies on stainless steels : The effect of sulphide inclusions , 2007 .

[4]  P. Hariharan,et al.  Basics of Holography , 1991 .

[5]  H. Hutter,et al.  ToF-SIMS measurements with topographic information in combined images , 2013, Analytical and Bioanalytical Chemistry.

[6]  Zeev Zalevsky,et al.  Super-resolved imaging : geometrical and diffraction approaches , 2011 .

[7]  V. Kain,et al.  Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel , 2010 .

[8]  H. Sidhom,et al.  Prediction of chromium depleted-zone evolution during aging of Ni–Cr–Fe alloys , 2002 .

[9]  Stephen M. Bruemmer,et al.  Development of grain boundary chromium depletion in type 304 and 316 stainless steels , 1986 .

[10]  Lobat Tayebi,et al.  Digital holographic microscopy of the myelin figure structural dynamics and the effect of thermal gradient , 2013, Biomedical optics express.

[11]  E. Cuche,et al.  Axial sub-nanometer accuracy in digital holographic microscopy , 2008 .

[12]  Robert Baboian,et al.  Corrosion tests and standards : application and interpretation , 1995 .

[13]  B Javidi,et al.  Real-Time Digital Holographic Microscopy for Phase Contrast 3D Imaging of Dynamic Phenomena , 2010, Journal of Display Technology.

[14]  Bahram Javidi,et al.  Cell Identification Computational 3-D Holographic Microscopy , 2011 .

[15]  Bahram Javidi,et al.  Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification. , 2017, Applied optics.

[16]  V. S. Raja,et al.  Corrosion Failures: Theory, Case Studies, and Solutions , 2015 .

[17]  L. Qiao,et al.  Effect of annealing temperature on the corrosion behavior of duplex stainless steel studied by in situ techniques , 2011 .

[18]  Vander Voort,et al.  Metallography, principles and practice , 1984 .

[19]  Subodh Kumar,et al.  Studies on metallurgical and impact toughness behavior of variably sensitized weld metal and heat affected zone of AISI 304L welds , 2016 .

[20]  N. Saintier,et al.  Crystal plasticity computation and atomic force microscopy analysis of the internal hydrogen-induced slip localization on polycrystalline stainless steel , 2012 .

[21]  P. Prangnell,et al.  Hydrogen-assisted stable crack growth in iron-3 wt% silicon steel , 1996 .

[22]  Myung K. Kim,et al.  Digital Holographic Microscopy , 2007 .

[23]  Christopher J Mann,et al.  High temperature measurements of martensitic transformations using digital holography. , 2013, Applied optics.

[24]  Myung K. Kim,et al.  Interference techniques in digital holography , 2006 .

[25]  Wolfgang Osten,et al.  Recent advances in digital holography [invited]. , 2014, Applied optics.

[26]  A. Odeshi,et al.  A comparative study of the compressive behaviour of AISI 321 austenitic stainless steel under quasi-static and dynamic shock loading , 2016 .

[27]  M. Matula,et al.  Intergranular corrosion of AISI 316L steel , 2001 .

[28]  T. Becker,et al.  Sensitisation identification of stainless steel to intergranular stress corrosion cracking by atomic force microscopy , 2008 .

[29]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[30]  V. Kain,et al.  Role of grain boundary nature and residual strain in controlling sensitisation of type 304 stainless steel , 2013 .

[31]  John A Rogers,et al.  Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [invited]. , 2014, Applied optics.

[32]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[33]  Patrik Langehanenberg,et al.  Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces , 2008 .

[34]  V. Číhal,et al.  On the development of the electrochemical potentiokinetic method , 2001 .

[35]  A. Joshi,et al.  Chemistry of Grain Boundaries and Its Relation to Intergranular Corrosion of Austenitic Stainless Steel , 1972 .

[36]  Bahram Javidi,et al.  Multi-dimensional Imaging , 2014 .

[37]  P. D. Tiedra,et al.  Study of influence of gamma prime and eta phases on corrosion behaviour of A286 superalloy by using electrochemical potentiokinetic techniques , 2015 .

[38]  Ning Wang,et al.  Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control , 2011 .

[39]  O. Kanoun,et al.  Investigation of the magnetostrictive effect in a terfenol-D plate under a non-uniform magnetic field by atomic force microscopy , 2016 .

[40]  Dennis C. Ghiglia,et al.  Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software , 1998 .

[41]  G. Kaupp Atomic force microscopy, scanning nearfield optical microscopy and nanoscratching : application to rough and natural surfaces , 2006 .

[42]  S. Mandal,et al.  Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel , 2017 .

[43]  K. Obrtlík,et al.  Study of surface relief evolution in fatigued 316L austenitic stainless steel by AFM , 2003 .

[44]  Bahram Javidi,et al.  Digital holographic microscopy with coupled optical fiber trap for cell measurement and manipulation. , 2014, Optics letters.

[45]  Pascal Picart,et al.  New techniques in digital holography , 2015 .

[46]  Vittorio Bianco,et al.  Diagnostic Tools for Lab-on-Chip Applications Based on Coherent Imaging Microscopy , 2015, Proceedings of the IEEE.

[47]  Anand Asundi Digital Holography for MEMS and Microsystem Metrology: Asundi/Digital Holography for MEMS and Microsystem Metrology , 2011 .

[48]  B Gutmann,et al.  Phase unwrapping with the branch-cut method: role of phase-field direction. , 2000, Applied optics.

[49]  B. Kemper,et al.  Digital holographic microscopy for live cell applications and technical inspection. , 2008, Applied optics.

[50]  Thomas S. Huang,et al.  Digital Holography , 2003 .