Illumination Estimation via Thin-Plate Spline Interpolation

Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to provide color constancy under changing illumination conditions and automatic white balancing for digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set, incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can estimate the color of the incident illumination quite accurately, and the proposed training set pruning significantly decreases the computation.

[1]  Graham D. Finlayson,et al.  Color by Correlation: A Simple, Unifying Framework for Color Constancy , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Gary D. Knott,et al.  Interpolating Cubic Splines , 2001, J. Approx. Theory.

[3]  Brian V. Funt,et al.  A comparison of computational color constancy Algorithms. II. Experiments with image data , 2002, IEEE Trans. Image Process..

[4]  Joost van de Weijer,et al.  Author Manuscript, Published in "ieee Transactions on Image Processing Edge-based Color Constancy , 2022 .

[5]  Sabih H. Gerez,et al.  Elastic minutiae matching by means of thin-plate spline models , 2002, Object recognition supported by user interaction for service robots.

[6]  Graham D. Finlayson,et al.  Shades of Gray and Colour Constancy , 2004, CIC.

[7]  Andrew Blake,et al.  Bayesian color constancy revisited , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Brian V. Funt,et al.  A Comparison of Computational Colour Constancy Algorithms. Part Two: Experiments on Image Data , 2002 .

[9]  Larry S. Davis,et al.  Multi-level fast multipole method for thin plate spline evaluation , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[10]  A. Khotanzad,et al.  A physics-based coordinate transformation for 3-D image matching , 1997, IEEE Transactions on Medical Imaging.

[11]  Kobus Barnard,et al.  Estimating the scene illumination chromaticity by using a neural network. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Graham D. Finlayson,et al.  Retinex viewed as a gamut-mapping theory of colour constancy , 1997 .

[13]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[14]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[15]  Joost van de Weijer,et al.  Generalized Gamut Mapping using Image Derivative Structures for Color Constancy , 2008, International Journal of Computer Vision.

[16]  Ingeborg Tastl,et al.  Gamut Constrained Illuminant Estimation , 2006, International Journal of Computer Vision.

[17]  Nur Arad,et al.  Image Warping Using Few Anchor Points and Radial Functions , 1995, Comput. Graph. Forum.

[18]  Brian V. Funt,et al.  A Large Image Database for Color Constancy Research , 2003, CIC.

[19]  Fred L. Bookstein,et al.  Morphometric Tools for Landmark Data. , 1998 .

[20]  Byoung-Ho Kang,et al.  Automatic White Balancing via Gray Surface Identification , 2007, CIC.

[21]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  J. Meinguet Multivariate interpolation at arbitrary points made simple , 1979 .

[23]  F. Bookstein Thin-plate splines and decomposition of deformation , 1989 .

[24]  Raimondo Schettini,et al.  Improving Color Constancy Using Indoor–Outdoor Image Classification , 2008, IEEE Transactions on Image Processing.

[25]  Graham D. Finlayson,et al.  Re-evaluating colour constancy algorithms , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[26]  John K. Tsotsos,et al.  From [R, G, B] to Surface Reflectance: Computing Color Constant Descriptors in Images , 1987, IJCAI.

[27]  S. D. Hordley,et al.  Reevaluation of color constancy algorithm performance. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Brian V. Funt,et al.  Estimating Illumination Chromaticity via Support Vector Regression , 2004, Color Imaging Conference.

[29]  D. Kendall MORPHOMETRIC TOOLS FOR LANDMARK DATA: GEOMETRY AND BIOLOGY , 1994 .

[30]  Brian V. Funt,et al.  Nonlinear RGB-to-XYZ Mapping for Device Calibration , 2005, Color Imaging Conference.

[31]  Brian V. Funt,et al.  Colour by Correlation in a Three-Dimensional Colour Space , 2000, ECCV.