A matheuristic approach to the orienteering problem with service time dependent profits

Abstract This paper addresses the orienteering problem with service time dependent profits (OPSTP), in which the profit collected at each vertex is characterized by a nonlinear function of service time, and the objective is to maximize the total profits by determining a subset of the vertices to be visited and assigning appropriate service time to each of them within a given time budget. To solve this problem, a mixed integer nonlinear programming model is formulated, and a two-phase matheuristic algorithm that consists of a tabu search method and a nonlinear programming is implemented. Extensive computational experiments are conducted on both randomly generated instances and instances that are adapted from the TSPLIB. The results show that our proposed matheuristic algorithm could be quite effective in finding good-quality solutions.

[1]  Suzanne van der Ster,et al.  A two-stage approach to the orienteering problem with stochastic weights , 2014, Comput. Oper. Res..

[2]  Bruce L. Golden,et al.  The team orienteering problem , 1996 .

[3]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[4]  Elise Miller-Hooks,et al.  Algorithms for a stochastic selective travelling salesperson problem , 2005, J. Oper. Res. Soc..

[5]  Andrzej Lingas,et al.  Approximation algorithms for time-dependent orienteering , 2002, Inf. Process. Lett..

[6]  E. Erkut,et al.  The maximum collection problem with time-dependent rewards , 1996 .

[7]  R. A. Zemlin,et al.  Integer Programming Formulation of Traveling Salesman Problems , 1960, JACM.

[8]  Gilbert Laporte,et al.  An adaptive large neighborhood search heuristic for the Pollution-Routing Problem , 2012, Eur. J. Oper. Res..

[9]  Kjetil Fagerholt,et al.  Routing and scheduling in a liquefied natural gas shipping problem with inventory and berth constraints , 2010, Annals of Operations Research.

[10]  Shih-Wei Lin,et al.  Solving the team orienteering problem using effective multi-start simulated annealing , 2013, Appl. Soft Comput..

[11]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[12]  Andrew Lim,et al.  An iterative three-component heuristic for the team orienteering problem with time windows , 2014, Eur. J. Oper. Res..

[13]  Abdullah Konak,et al.  The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion , 2016 .

[14]  Hoong Chuin Lau,et al.  Orienteering Problem: A survey of recent variants, solution approaches and applications , 2016, Eur. J. Oper. Res..

[15]  Daniela Rus,et al.  Anytime planning of optimal schedules for a mobile sensing robot , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[16]  Xia Wang,et al.  Using a Genetic Algorithm to Solve the Generalized Orienteering Problem , 2008 .

[17]  Elise Miller-Hooks,et al.  A TABU search heuristic for the team orienteering problem , 2005, Comput. Oper. Res..

[18]  Gilbert Laporte,et al.  The selective travelling salesman problem , 1990, Discret. Appl. Math..

[19]  Xiaodong Li,et al.  Efficient meta-heuristics for the Multi-Objective Time-Dependent Orienteering Problem , 2016, Eur. J. Oper. Res..

[20]  Mark S. Daskin,et al.  The orienteering problem with stochastic profits , 2008 .

[21]  Alain Hertz,et al.  The capacitated team orienteering and profitable tour problems , 2007, J. Oper. Res. Soc..

[22]  Nacima Labadie,et al.  Team Orienteering Problem with Decreasing Profits , 2013, Electron. Notes Discret. Math..

[23]  Ali Ekici,et al.  Multiple agents maximum collection problem with time dependent rewards , 2013, Comput. Ind. Eng..

[24]  Maria Grazia Speranza,et al.  A survey on matheuristics for routing problems , 2014, EURO J. Comput. Optim..

[25]  Johannes O. Royset,et al.  Generalized orienteering problem with resource dependent rewards , 2013 .

[26]  Gilbert Laporte,et al.  The orienteering problem with variable profits , 2013, Networks.

[27]  Dirk Van Oudheusden,et al.  Iterated local search for the team orienteering problem with time windows , 2009, Comput. Oper. Res..

[28]  Elise Miller-Hooks,et al.  Scheduling technicians for planned maintenance of geographically distributed equipment , 2007 .

[29]  Antonio Bolufé Röhler,et al.  Matheuristics: Optimization, Simulation and Control , 2009, Hybrid Metaheuristics.

[30]  Michel Gendreau,et al.  A tabu search heuristic for the undirected selective travelling salesman problem , 1998, Eur. J. Oper. Res..

[31]  Bruce L. Golden,et al.  The effective application of a new approach to the generalized orienteering problem , 2010, J. Heuristics.

[32]  C. Verbeeck,et al.  A fast solution method for the time-dependent orienteering problem , 2013, Eur. J. Oper. Res..

[33]  Manuel Laguna,et al.  Tabu Search , 1997 .

[34]  Michel Gendreau,et al.  An exact algorithm for team orienteering problems , 2007, 4OR.

[35]  Dirk Van Oudheusden,et al.  The orienteering problem: A survey , 2011, Eur. J. Oper. Res..

[36]  Anthony F. Han,et al.  A multi-start heuristic approach for the split-delivery vehicle routing problem with minimum delivery amounts , 2016 .

[37]  Michel Gendreau,et al.  The orienteering problem with stochastic travel and service times , 2011, Ann. Oper. Res..

[38]  Adel Guitouni,et al.  An orienteering model for the search and rescue problem , 2014, Comput. Manag. Sci..

[39]  Yang Liu,et al.  Mobile Traffic Sensor Routing in Dynamic Transportation Systems , 2014, IEEE Transactions on Intelligent Transportation Systems.

[40]  Vitor Nazário Coelho,et al.  An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints , 2016, Eur. J. Oper. Res..

[41]  Dirk Van Oudheusden,et al.  The Multiconstraint Team Orienteering Problem with Multiple Time Windows , 2010, Transp. Sci..

[42]  G. Dantzig Discrete-Variable Extremum Problems , 1957 .

[43]  R. Vohra,et al.  The Orienteering Problem , 1987 .

[44]  T. Tsiligirides,et al.  Heuristic Methods Applied to Orienteering , 1984 .

[45]  Felix T.S. Chan,et al.  Pareto mimic algorithm: An approach to the team orienteering problem , 2016 .