Linear and Nonlinear Shear Rheology of a Marginally Entangled Ring Polymer

We present systematic, unique linear and nonlinear shear rheology data of an experimentally pure ring polystyrene and its linear precursor. This polymer was synthesized anionically and characterized by interaction chromatography and fractionation at the critical condition. Its weight-average molar mass is 84 kg/mol; i.e., it is marginally entangled (entanglement number Z ≈ 5). Its linear viscoelastic response appears to be better described by the Rouse model (accounting for ring closure) rather than the lattice-animal-based model, suggesting a transition from unentangled to entangled ring dynamics. The failure of both models in the terminal region may reflect the remaining unlinked linear contaminants and/or ring–ring interpenetration. The viscosity evolution at different shear rates was measured using a homemade cone-partitioned plate fixture in order to avoid edge fracture instabilities. Our findings suggest that rings are much less shear thinning compared to their linear counterparts, whereas both obey...

[1]  C. Schroeder,et al.  When Ends Meet: Circular DNA Stretches Differently in Elongational Flows , 2015 .

[2]  Eunsang Lee,et al.  Slowing down of ring polymer diffusion caused by inter-ring threading. , 2015, Macromolecular rapid communications.

[3]  Yunqi Li,et al.  Conformations and dynamics of single flexible ring polymers in simple shear flow , 2015 .

[4]  Y. Matsushita,et al.  Melt Rheology of Ring Polystyrenes with Ultrahigh Purity , 2015 .

[5]  U. Gasser,et al.  Molecular scale dynamics of large ring polymers. , 2014, Physical review letters.

[6]  V. Mavrantzas,et al.  Threading of Ring Poly(ethylene oxide) Molecules by Linear Chains in the Melt. , 2014, ACS macro letters.

[7]  J. Wittmer,et al.  Melt of polymer rings: The decorated loop model , 2014 .

[8]  A. Grosberg Annealed lattice animal model and Flory theory for the melt of non-concatenated rings: towards the physics of crumpling. , 2013, Soft matter.

[9]  Ralf Everaers,et al.  Ring polymers in the melt state: the physics of crumpling. , 2013, Physical review letters.

[10]  D. Vlassopoulos,et al.  Viscosity of ring polymer melts. , 2013, ACS macro letters.

[11]  M. S. Turner,et al.  The topological glass in ring polymers , 2013 .

[12]  F. Snijkers,et al.  Start-up and relaxation of well-characterized comb polymers in simple shear , 2013 .

[13]  D. Michieletto,et al.  Threading Dynamics of Ring Polymers in a Gel. , 2013, ACS macro letters.

[14]  D. Vlassopoulos,et al.  Double Stress Overshoot in Start-Up of Simple Shear Flow of Entangled Comb Polymers. , 2013, ACS macro letters.

[15]  T. Schweizer,et al.  A cone-partitioned plate rheometer cell with three partitions (CPP3) to determine shear stress and both normal stress differences for small quantities of polymeric fluids , 2013 .

[16]  L. An,et al.  Tumbling and tank-treading dynamics of individual ring polymers in shear flow , 2013 .

[17]  G. Grest,et al.  Rheology of ring polymer melts: from linear contaminants to ring-linear blends. , 2011, Physical review letters.

[18]  F. Snijkers,et al.  Cone-partitioned-plate geometry for the ARES rheometer with temperature control , 2011 .

[19]  Kurt Kremer,et al.  Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics. , 2011, The Journal of chemical physics.

[20]  Kurt Kremer,et al.  Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics. , 2011, The Journal of chemical physics.

[21]  S. Milner,et al.  Stress relaxation in entangled melts of unlinked ring polymers. , 2010, Physical review letters.

[22]  V. Mavrantzas,et al.  Flow Effects on Melt Structure and Entanglement Network of Linear Polymers: Results from a Nonequilibrium Molecular Dynamics Simulation Study of a Polyethylene Melt in Steady Shear , 2010 .

[23]  Shichang Wang,et al.  Elastic yielding after step shear and during LAOS in the absence of meniscus failure , 2010 .

[24]  L. G. Leal,et al.  Stress Relaxation of Comb Polymers with Short Branches , 2009 .

[25]  L. G. Leal,et al.  Nonlinear rheology of model comb polymers , 2009 .

[26]  M. Wagner,et al.  The damping function in rheology , 2009 .

[27]  G. Ercolani,et al.  Mechanism of Threading a Polymer Through a Macrocyclic Ring , 2008, Science.

[28]  T. McLeish Polymer dynamics: Floored by the rings. , 2008, Nature materials.

[29]  D Richter,et al.  Unexpected power-law stress relaxation of entangled ring polymers. , 2008, Nature materials.

[30]  Shi‐Qing Wang,et al.  Universal scaling characteristics of stress overshoot in startup shear of entangled polymer solutions , 2008 .

[31]  A. E. Likhtman,et al.  Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights , 2008 .

[32]  S. Coppola,et al.  Unusual Nonlinear Effects in the Rheology of Entangled Polymer Melts(Non Equilibrium Soft Matter) , 2008 .

[33]  Shi‐Qing Wang,et al.  New theoretical considerations in polymer rheology: elastic breakdown of chain entanglement network. , 2007, The Journal of chemical physics.

[34]  M. Nagura,et al.  Successive Synthesis of Well-Defined Many Arm Star-Branched Polymers by an Iterative Methodology Using a Specially Designed 1,1-Diphenylethylene , 2006 .

[35]  Tadashi Inoue,et al.  Transient Conformational Change of Bead−Spring Ring Chain during Creep Process , 2006 .

[36]  L. Archer,et al.  Stress relaxation of branched polymers , 2005 .

[37]  L. G. Leal,et al.  Linear Rheology of Architecturally Complex Macromolecules: Comb Polymers with Linear Backbones , 2005 .

[38]  T. Chang Polymer characterization by interaction chromatography , 2005 .

[39]  M. Bousmina,et al.  Damping function for narrow and large molecular weight polymers: comparison with the force-balanced network model , 2005 .

[40]  D. Venerus A critical evaluation of step strain flows of entangled linear polymer liquids , 2005 .

[41]  J. G. Torre,et al.  Steady-state behavior of ring polymers in dilute flowing solutions via Brownian dynamics , 2005 .

[42]  T. Schweizer,et al.  Nonlinear shear rheology of polystyrene melt with narrow molecular weight distribution—Experiment and theory , 2004 .

[43]  Richard S. Graham,et al.  Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release , 2003 .

[44]  T. Schweizer Comparing cone-partitioned plate and cone-standard plate shear rheometry of a polystyrene melt , 2003 .

[45]  L. Archer,et al.  Step and steady shear responses of nearly monodisperse highly entangled 1,4-polybutadiene solutions , 2003 .

[46]  L. G. Leal,et al.  Definitions of entanglement spacing and time constants in the tube model , 2003 .

[47]  Vlasis G. Mavrantzas,et al.  Crossover from the Rouse to the Entangled Polymer Melt Regime: Signals from Long, Detailed Atomistic Molecular Dynamics Simulations, Supported by Rheological Experiments , 2003 .

[48]  Juliani,et al.  Relaxation dynamics of polymer liquids in nonlinear step shear , 2002 .

[49]  S. Kawahara,et al.  Preparation and characterization of cyclic polystyrene with short poly(2‐tert‐butylbutadiene) sequences , 2002 .

[50]  Tom C. B. McLeish,et al.  Quantitative Theory for Linear Dynamics of Linear Entangled Polymers , 2002 .

[51]  T. Schweizer Measurement of the first and second normal stress differences in a polystyrene melt with a cone and partitioned plate tool , 2002 .

[52]  Soojin Park,et al.  Structural Characterization of Ring Polystyrene by Liquid Chromatography at the Critical Condition and MALDI−TOF Mass Spectrometry , 2001 .

[53]  Hyunjung Lee,et al.  Fractionation of Cyclic Polystyrene from Linear Precursor by HPLC at the Chromatographic Critical Condition , 2000 .

[54]  T. Lodge,et al.  Molecular Weight Distribution of Polystyrene Made by Anionic Polymerization , 2000 .

[55]  T. McLeish,et al.  Dynamics of Entangled H-Polymers: Theory, Rheology, and Neutron-Scattering , 1999 .

[56]  C. Macosko,et al.  Nonlinear shear and extensional rheology of long-chain randomly branched polybutadiene , 1998 .

[57]  R. Larson,et al.  Molecular constitutive equations for a class of branched polymers: The pom-pom polymer , 1998 .

[58]  Tadashi Inoue,et al.  Molecular origin of viscoelasticity and chain orientation of glassy polymers , 1997 .

[59]  G. Marrucci,et al.  DYNAMICS OF ENTANGLEMENTS: A NONLINEAR MODEL CONSISTENT WITH THE COX-MERZ RULE , 1996 .

[60]  D. J. Walsh,et al.  Standard Pressure Volume Temperature Data for Polymers , 1995 .

[61]  Obukhov,et al.  Dynamics of a ring polymer in a gel. , 1994, Physical review letters.

[62]  T. Masuda,et al.  Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates , 1993 .

[63]  R. Larson Instabilities in viscoelastic flows , 1992 .

[64]  E. Herbolzheimer,et al.  Transient behavior of entangled polymers at high shear rates , 1991 .

[65]  Tadashi Inoue,et al.  Birefringence of amorphous polymers. 1. Dynamic measurement on polystyrene , 1991 .

[66]  J. Meissner,et al.  Measuring Normal Stress Differences in Polymer Melt Shear Flow , 1989 .

[67]  N. Hadjichristidis,et al.  A study of the linear viscoelastic properties of cyclic polystyrenes using creep and recovery measurements , 1989 .

[68]  J. Roovers Viscoelastic properties of polybutadiene rings , 1988 .

[69]  J. A. Semlyen,et al.  Studies of cyclic and linear poly(dimethylsiloxanes): 27. Bulk viscosities above the critical molar mass for entanglement , 1988 .

[70]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[71]  M. Rubinstein,et al.  Dynamics of ring polymers in the presence of fixed obstacles. , 1986, Physical review letters.

[72]  J. M. Deutsch,et al.  Conjectures on the statistics of ring polymers , 1986 .

[73]  M. Rosenthal Psychology and gynaecological problems , 1986 .

[74]  R. Larson Nonlinear Shear Relaxation Modulus for a Linear Low‐Density Polyethylene , 1985 .

[75]  J. Roovers The melt properties of ring polystyrenes , 1985 .

[76]  J. Roovers Melt rheology of H-shaped polystyrenes , 1984 .

[77]  R. Larson A Constitutive Equation for Polymer Melts Based on Partially Extending Strand Convection , 1984 .

[78]  E. Menezes,et al.  Nonlinear rheological behavior of polymer systems for several shear‐flow histories , 1982 .

[79]  J. Roovers,et al.  Preparation and characterization of H-shaped polystyrene , 1981 .

[80]  M. Wagner Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt , 1976 .

[81]  W. Graessley Molecular Entanglement Theory of Flow Behavior in Amorphous Polymers , 1965 .

[82]  W. Cox,et al.  Correlation of dynamic and steady flow viscosities , 1958 .

[83]  G. Marrucci,et al.  Convective constraint release (CCR) revisited , 2014 .

[84]  W. Carl Configurational and rheological properties of cyclic polymers , 1995 .

[85]  R. Bird,et al.  Effect of ring closure on rheological behavior , 1987 .

[86]  S. Edwards,et al.  Dynamics of concentrated polymer systems. Part 4.—Rheological properties , 1979 .