Inductive type properties of FeCoZr–CaF2 and FeCoZr–PZT nanocomposites

The paper presents investigations into frequency dependences of conductivity, capacitance and the phase angle θ for nanocomposites (FeCoZr)x(CaF2)(100−x) and (FeCoZr)x(PZT)(100−x). The nanocomposites have been produced with the application of ion-beam sputtering using pure argon ions (oxygen-free materials) and mixed ions of argon and oxygen (oxygen materials). The phase angle versus frequency characteristics for the oxygen nanocomposites show a transition from negative to positive phase angle values along with the frequency increase. The maximum observed phase angle θ values reach beyond the 90°. The phase angle transition through 0° is accompanied with the voltage resonance phenomenon that is represented by strong minima in the capacitance versus frequency curves. In the conductivity versus frequency characteristics, strong minima occur during the phase angle θ transition through 90°, which corresponds to the occurrence of current resonance. Occurrence of the coilless inductance features in nanocomposites (FeCoZr)x(PZT)(100−x) and (FeCoZr)x(CaF2)(100−x), produced with the ion-beam sputtering using argon and oxygen ions, is related to the formation of a subsurface layer of metal oxides on the metallic phase nanogranules.

[1]  Fadei F. Komarov,et al.  Dielectric properties and model of hopping conductivity of GaAs irradiated by H+ ions , 2007 .

[2]  X. M. Chen,et al.  Dielectric and magnetoelectric characterization of CoFe2O4/Ba0.55Sr0.25Ca0.2Nb2O6 composites , 2005 .

[3]  A. Patryn,et al.  Influence of matrix type on negative capacitance effect in nanogranular composite films FeCoZr-insulator , 2013 .

[4]  Yurii E. Kalinin,et al.  Electrical properties and giant magnetoresistance of the CoFeB–SiO2 amorphous granular composites , 2001 .

[5]  Jianjun Jiang,et al.  Percolation and microwave characteristics of CoFeB–SiO2 nano-granular films , 2007 .

[6]  S. Honda,et al.  Tunneling giant magnetoresistance in heterogeneous F e − S i O 2 granular films , 1997 .

[7]  P. Węgierek,et al.  Formation of Noncoil-Like Inductance in Nanocomposites (Fe0.45Co0.45Zr0.10)x(Al2O3)1-xManufactured by Ion-Beam Sputtering of Complex Targets in Ar+O2Atmosphere , 2011 .

[8]  Vitalii Bondariev,et al.  Annealing of (CoFeZr)x(CaF2)100-xNanocomposites Produced by the Ion-Beam Sputtering in the Ar and O2Ambient , 2013 .

[9]  E. Pavlidou,et al.  Investigation of the characteristics and corrosion resistance of Al2O3/TiN coatings , 2006 .

[10]  M. Marszałek,et al.  Effect of oxygen pressure on phase composition and magnetic structure of FeCoZr-Pb(ZrTi)O3 nanocomposites , 2012 .

[11]  S. Honda,et al.  Tunneling giant magnetoresistance in Fe-SiO2 multilayered and alloyed films , 1997 .

[12]  V. M. Beresnev,et al.  Nanocoatings Nanosystems Nanotechnologies , 2012 .

[13]  Q. Wan,et al.  Third-order optical nonlinearity and negative photoconductivity of Ge nanocrystals in Al2O3 dielectric , 2003 .

[14]  A. K. Fedotov,et al.  Influence of sputtering atmosphere on hopping conductance in granular nanocomposite (FeCoZr)x(Al2O3)1−x films , 2014 .

[15]  A. Rodzik,et al.  Dielectric constant and ac conductivity of semi-insulating Cd[sub 1−x]Mn[sub x]Te semiconductors , 1997 .

[16]  F. F. Komarov,et al.  Multilayered Nano-Microcomposite Ti-Al-N/TiN/Al2O3Coatings. Their Structure and Properties , 2011 .

[17]  J. Przewoźnik,et al.  Effect of oxide shells on the magnetic and magnetotransport characteristics of oxidized FeCoZr nanogranules in Al2O3 , 2011 .

[18]  O. Boiko,et al.  AC Hopping Conductance in Nanocomposite Films with Ferromagnetic Alloy Nanoparticles in a PbZrTiO3 Matrix , 2015, Journal of Electronic Materials.

[19]  Vitalii Bondariev,et al.  Enhancement of negative capacitance effect in (CoFeZr)x(CaF2)(100−x) nanocomposite films deposited by ion beam sputtering in argon and oxygen atmosphere , 2014 .

[20]  V. F. Stelmakh,et al.  Study of the Dielectric Function of Silicon Irradiated with a Large Dose of Neutrons , 1991 .

[21]  A. Fedotov,et al.  Temperature and frequency dependences of real part of impedance in the FeCoZr-doped PZT nanogranular composites , 2012 .

[22]  Tomasz N. Koltunowicz,et al.  Correlation between local Fe states and magnetoresistivity in granular films containing FeCoZr nanoparticles embedded into oxygen-free dielectric matrix , 2014 .

[23]  A. Fedotov,et al.  Negative capacitance in (FeCoZr)–(PZT) nanocomposite films , 2013 .

[24]  A. Fedotov,et al.  AC/DC conductance in granular nanocomposite films (Fe45Co45Zr10)x(CaF2)100−x , 2014 .

[25]  K. Yakushiji,et al.  Composition dependence of particle size distribution and giant magnetoresistance in Co–Al–O granular films , 2000 .

[26]  J. Przewoźnik,et al.  Growth-induced non-planar magnetic anisotropy in FeCoZr-CaF2 nanogranular films: Structural and magnetic characterization , 2014 .

[27]  A. K. Fedotov,et al.  Hopping of electron transport in granular Cux(SiO2)1–x nanocomposite films deposited by ion-beam sputtering , 2014 .

[28]  Vladimir V. Uglov,et al.  Nanocomposite protective coatings based on Ti-N-Cr/Ni-Cr-B-Si-Fe, their structure and properties , 2009 .