Smooth Orthogonal Layouts

We study the problem of creating smooth orthogonal layouts for planar graphs. While in traditional orthogonal layouts every edge is made of a sequence of axis-aligned line segments, in smooth orthogonal layouts every edge is made of axis-aligned segments and circular arcs with common tangents. Our goal is to create such layouts with low edge complexity, measured by the number of line and circular arc segments. We show that every biconnected 4-planar graph has a smooth orthogonal layout with edge complexity 3. If the input graph has a complexity-2 traditional orthogonal layout, we can transform it into a smooth complexity-2 layout. Using the Kandinsky model for removing the degree restriction, we show that any planar graph has a smooth complexity-2 layout.

[1]  Jarke J. van Wijk,et al.  Force‐Directed Edge Bundling for Graph Visualization , 2009, Comput. Graph. Forum.

[2]  Emilio Di Giacomo,et al.  Curve-constrained drawings of planar graphs , 2005, Comput. Geom..

[3]  Roberto Tamassia,et al.  Curvilinear Graph Drawing Using the Force-Directed Method , 2004, GD.

[4]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[5]  Norishige Chiba,et al.  A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees , 1985, J. Comput. Syst. Sci..

[6]  Yanpei Liu,et al.  A Linear Algorithm for 2-bend Embeddings of Planar Graphs in the Two-dimensional Grid , 1998, Discret. Appl. Math..

[7]  Michael T. Goodrich,et al.  A Framework for Drawing Planar Graphs with Curves and Polylines , 1998, Graph Drawing.

[8]  Charles E. Leiserson,et al.  Area-efficient graph layouts , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[9]  Michael T. Goodrich,et al.  Force-Directed Lombardi-Style Graph Drawing , 2011, Graph Drawing.

[10]  Ioannis G. Tollis,et al.  Planar grid embedding in linear time , 1989 .

[11]  Charles E. Leiserson,et al.  Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.

[12]  U. Brandes,et al.  Improving Angular Resolution in Visualizations of Geographic Networks , 2000 .

[13]  Roberto Tamassia,et al.  On Embedding a Graph in the Grid with the Minimum Number of Bends , 1987, SIAM J. Comput..

[14]  Michael Hirsch,et al.  Biclique Edge Cover Graphs and Confluent Drawings , 2006, Graph Drawing.

[15]  Michael Kaufmann,et al.  Drawing High Degree Graphs with Low Bend Numbers , 1995, GD.

[16]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[17]  David Eppstein,et al.  Journal of Graph Algorithms and Applications Confluent Drawings: Visualizing Non-planar Diagrams in a Planar Way , 2022 .

[18]  Frank Thomson Leighton,et al.  A Framework for Solving VLSI Graph Layout Problems , 1983, J. Comput. Syst. Sci..

[19]  Timothy M. Chan Geometric Applications of a Randomized Optimization Technique , 1998, SCG '98.

[20]  Michael Kaufmann,et al.  Journal of Graph Algorithms and Applications Embedding Vertices at Points: Few Bends Suffice for Planar Graphs , 2022 .

[21]  Ulrik Brandes,et al.  Angle and Distance Constraints on Tree Drawings , 2006, Graph Drawing.

[22]  David Eppstein,et al.  Delta-Confluent Drawings , 2005, Graph Drawing.

[23]  Franz Aurenhammer,et al.  Arc Triangulations , 2009 .

[24]  Goos Kant,et al.  A Better Heuristic for Orthogonal Graph Drawings , 1994, ESA.

[25]  David Eppstein,et al.  Confluent Layered Drawings , 2006, Algorithmica.

[26]  Roberto Tamassia,et al.  On the Compuational Complexity of Upward and Rectilinear Planarity Testing , 1994, Graph Drawing.

[27]  Goos Kant,et al.  Drawing planar graphs using the canonical ordering , 1996, Algorithmica.

[28]  Leslie G. Valiant,et al.  Universality considerations in VLSI circuits , 1981, IEEE Transactions on Computers.

[29]  W. Marsden I and J , 2012 .

[30]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[31]  Michael Kaufmann,et al.  Area-Efficient Static and Incremental Graph Drawings , 1997, ESA.

[32]  David Eppstein,et al.  Drawing Trees with Perfect Angular Resolution and Polynomial Area , 2013, Discret. Comput. Geom..

[33]  Weidong Huang,et al.  A graph reading behavior: Geodesic-path tendency , 2009, 2009 IEEE Pacific Visualization Symposium.

[34]  Michael A. Bekos,et al.  Smooth Orthogonal Layouts , 2013, J. Graph Algorithms Appl..

[35]  Michael T. Goodrich,et al.  Drawing planar graphs with circular arcs , 2001, Discret. Comput. Geom..

[36]  Goos Kant Hexagonal Grid Drawings , 1992, WG.