Identification of Scale-Independent Material Parameters in the Relaxed Micromorphic Model Through Model-Adapted First Order Homogenization

We rigorously determine the scale-independent short range elastic parameters in the relaxed micromorphic generalized continuum model for a given periodic microstructure. This is done using both classical periodic homogenization and a new procedure involving the concept of apparent material stiffness of a unit-cell under affine Dirichlet boundary conditions and Neumann’s principle on the overall representation of anisotropy. We explain our idea of “maximal” stiffness of the unit-cell and use state of the art first order numerical homogenization methods to obtain the needed parameters for a given tetragonal unit-cell. These results are used in the accompanying paper (d’Agostino et al. in J. Elast. 2019 . Accepted in this volume) to describe the wave propagation including band-gaps in the same tetragonal metamaterial.

[1]  A. Cemal Eringen,et al.  NONLINEAR THEORY OF SIMPLE MICRO-ELASTIC SOLIDS-I , 1964 .

[2]  Y. Bréchet,et al.  Derivation of anisotropic matrix for bi-dimensional strain-gradient elasticity behavior , 2009 .

[3]  R. Hill On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  P. Neff,et al.  Maxwell meets Korn: A new coercive inequality for tensor fields in RN×N with square‐integrable exterior derivative , 2011, 1105.5013.

[5]  Christian Huet,et al.  Application of variational concepts to size effects in elastic heterogeneous bodies , 1990 .

[6]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[7]  O. Rokoš,et al.  Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields , 2018, Journal of the Mechanics and Physics of Solids.

[8]  Giuseppe Rosi,et al.  Reflection and transmission of elastic waves at interfaces embedded in non-local band-gap metamaterials : a comprehensive study via the relaxed micromorphic model , 2016, 1602.05218.

[9]  P. Neff,et al.  Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature , 2010 .

[10]  Christian Huet,et al.  An integrated micromechanics and statistical continuum thermodynamics approach for studying the fracture behaviour of microcracked heterogeneous materials with delayed response , 1997 .

[11]  G. Hütter Homogenization of a Cauchy continuum towards a micromorphic continuum , 2017 .

[12]  V. Kouznetsova,et al.  Multi-scale second-order computational homogenization of multi-phase materials : a nested finite element solution strategy , 2004 .

[13]  Patrizio Neff,et al.  Existence of minimizers for a finite-strain micromorphic elastic solid , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Holger Steeb,et al.  Stress and couple stress in foams , 2003 .

[15]  Pierre Suquet,et al.  Effective properties of nonlinear composites , 1997 .

[16]  I. Jasiuk,et al.  Scale and boundary conditions effects on the apparent elastic moduli of trabecular bone modeled as a periodic cellular solid. , 2009, Journal of biomechanical engineering.

[17]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[18]  Stefan Diebels,et al.  Evaluation of generalized continuum substitution models for heterogeneous materials , 2012 .

[19]  P. Neff,et al.  Effective description of anisotropic wave dispersion in mechanical metamaterials via the relaxed micromorphic model , 2017 .

[20]  W. Ehlers,et al.  From particle mechanics to micromorphic media. Part I: Homogenisation of discrete interactions towards stress quantities , 2020 .

[21]  Patrizio Neff,et al.  Real wave propagation in the isotropic-relaxed micromorphic model , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  P. Neff,et al.  A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions , 2015, 1504.00868.

[23]  Patrizio Neff,et al.  Low-and high-frequency Stoneley waves, reflection and transmission at a Cauchy/relaxed micromorphic interface , 2018, 1810.12578.

[24]  A. Abdulle ANALYSIS OF A HETEROGENEOUS MULTISCALE FEM FOR PROBLEMS IN ELASTICITY , 2006 .

[25]  P. Neff,et al.  Modeling Phononic Crystals via the Weighted Relaxed Micromorphic Model with Free and Gradient Micro-Inertia , 2016, 1610.03878.

[26]  M. Svanadze Potential Method in the Theory of Elasticity for Triple Porosity Materials , 2017 .

[27]  M. Lazar,et al.  The relaxed linear micromorphic continuum: well-posedness of the static problem and relations to the gauge theory of dislocations , 2014, 1403.3442.

[28]  Luca Placidi,et al.  The relaxed linear micromorphic continuum: Existence, uniqueness and continuous dependence in dynamics , 2013, 1308.3762.

[29]  P. Neff,et al.  Poincare meets Korn via Maxwell: Extending Korn's First Inequality to Incompatible Tensor Fields , 2012, 1203.2744.

[30]  P. Neff,et al.  Relaxed micromorphic model of transient wave propagation in anisotropic band-gap metastructures , 2018, International Journal of Solids and Structures.

[31]  Tarek I. Zohdi,et al.  Homogenization Methods and Multiscale Modeling , 2004 .

[32]  Christian Huet,et al.  Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies , 1999 .

[33]  Marc G. D. Geers,et al.  Transient computational homogenization for heterogeneous materials under dynamic excitation , 2013 .

[34]  I. Jasiuk,et al.  A micromechanically based couple-stress model of an elastic orthotropic two-phase composite , 2002 .

[35]  M. Geers,et al.  Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum , 2016, Computational Mechanics.

[36]  S. Forest Mechanics of generalized continua: construction by homogenizaton , 1998 .

[37]  Patrizio Neff,et al.  A Geometrically Exact Micromorphic Model for Elastic Metallic Foams Accounting for Affine Microstructure. Modelling, Existence of Minimizers, Identification of Moduli and Computational Results , 2007 .

[38]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[39]  Oskar Emil Meyer,et al.  Vorlesungen über die Theorie der Elasticität der festen Körper und des Lichtäthers , 1885 .

[40]  Bernhard Eidel,et al.  The heterogeneous multiscale finite element method for the homogenization of linear elastic solids and a comparison with the FE2 method , 2017, 1701.08313.

[41]  Raffaele Barretta,et al.  Micromorphic continua: non-redundant formulations , 2016 .

[42]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[43]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[44]  G. Hütter On the micro-macro relation for the microdeformation in the homogenization towards micromorphic and micropolar continua , 2019, Journal of the Mechanics and Physics of Solids.

[45]  Alexander Düster,et al.  Two-scale modelling of micromorphic continua , 2009 .

[46]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.

[47]  Samuel Forest,et al.  Generalized continua and non‐homogeneous boundary conditions in homogenisation methods , 2011 .

[48]  G. Rosi,et al.  Band gaps in the relaxed linear micromorphic continuum , 2014, 1405.3493.

[49]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[50]  T. Böhlke,et al.  Homogenization and Materials Design of Anisotropic Multiphase Linear Elastic Materials Using Central Model Functions , 2017 .

[51]  K. Hackl,et al.  Plasticity and Beyond , 2014 .

[52]  Leong Hien Poh,et al.  A micromorphic computational homogenization framework for heterogeneous materials , 2017 .

[53]  S. Torquato,et al.  Scale effects on the elastic behavior of periodic andhierarchical two-dimensional composites , 1999 .

[54]  Patrizio Neff,et al.  Effective Description of Anisotropic Wave Dispersion in Mechanical Band-Gap Metamaterials via the Relaxed Micromorphic Model , 2017, Journal of Elasticity.

[55]  P. Neff,et al.  A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model , 2015, 1505.00995.

[56]  P. Neff,et al.  Curl bounds Grad on SO(3) , 2006 .

[57]  Iwona M Jasiuk,et al.  A micromechanically based couple–stress model of an elastic two-phase composite , 2001 .

[58]  J. Schröder A numerical two-scale homogenization scheme: the FE 2 -method , 2014 .

[59]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[60]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[61]  S. Forest,et al.  Cosserat overall modeling of heterogeneous materials , 1998 .

[62]  Bernhard Eidel,et al.  Convergence and error analysis of FE-HMM/FE2 for energetically consistent micro-coupling conditions in linear elastic solids , 2018, European Journal of Mechanics - A/Solids.

[63]  Kirill Cherednichenko,et al.  On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media , 2000 .

[64]  Patrizio Neff,et al.  Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics , 2016, 1601.03667.

[65]  Samuel Forest,et al.  Homogenization methods and mechanics of generalized continua - part 2 , 2002 .

[66]  Patrizio Neff,et al.  Microstructure-related Stoneley waves and their effect on the scattering properties of a 2D Cauchy/relaxed-micromorphic interface , 2019, Wave Motion.

[67]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[68]  Patrizio Neff,et al.  The modified indeterminate couple stress model: Why Yang et al.'s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless , 2015, 1512.02053.

[69]  G. Starke,et al.  Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions , 2013, 1307.1434.

[70]  K. Sab On the homogenization and the simulation of random materials , 1992 .

[71]  P. Neff,et al.  Scattering of finite-size anisotropic metastructures via the relaxed micromorphic model , 2019 .

[72]  A. Eringen Mechanics of micromorphic materials , 1966 .

[73]  Patrizio Neff,et al.  Subgrid interaction and micro-randomness – Novel invariance requirements in infinitesimal gradient elasticity , 2009 .

[74]  Joachim Weickert,et al.  Mathematical Morphology on Tensor Data Using the Loewner Ordering , 2006, Visualization and Processing of Tensor Fields.

[75]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[76]  Stéphane Hans,et al.  Large scale modulation of high frequency waves in periodic elastic composites , 2014 .

[77]  P. Neff,et al.  A variant of the linear isotropic indeterminate couple stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and complete traction boundary conditions , 2015 .

[78]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[79]  On the replica method for glassy systems , 1998, cond-mat/9806003.

[80]  P. Neff,et al.  Complete band gaps including non-local effects occur only in the relaxed micromorphic model , 2016, 1602.04315.

[81]  P. M. Squet Local and Global Aspects in the Mathematical Theory of Plasticity , 1985 .

[82]  Patrizio Neff,et al.  On material constants for micromorphic continua , 2004 .

[83]  Luca Placidi,et al.  A unifying perspective: the relaxed linear micromorphic continuum , 2013, Continuum Mechanics and Thermodynamics.

[84]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .