Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk
暂无分享,去创建一个
[1] I. Podlubny. Fractional differential equations , 1998 .
[2] Gianni De Fabritiis,et al. Discrete random walk models for symmetric Lévy–Feller diffusion processes , 1999 .
[3] R. Hilfer. FRACTIONAL TIME EVOLUTION , 2000 .
[4] D. F. Hays,et al. Table of Integrals, Series, and Products , 1966 .
[5] Linear relaxation processes governed by fractional symmetric kinetic equations , 1999, cond-mat/9910091.
[6] E. Montroll,et al. CHAPTER 2 – On an Enriched Collection of Stochastic Processes* , 1979 .
[7] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[8] B. Gnedenko,et al. Limit Distributions for Sums of Independent Random Variables , 1955 .
[9] M. Riesz. L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .
[10] Mark M. Meerschaert,et al. STOCHASTIC SOLUTIONS FOR FRACTIONAL CAUCHY PROBLEMS , 2003 .
[11] Francesco Mainardi,et al. Approximation of Levy-Feller Diffusion by Random Walk , 1999 .
[12] Marcin Kotulski,et al. Asymptotic distributions of continuous-time random walks: A probabilistic approach , 1995 .
[13] K. Miller,et al. Completely monotonic functions , 2001 .
[14] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[15] Francesco Mainardi,et al. Linear models of dissipation in anelastic solids , 1971 .
[16] Hilfer,et al. Fractional master equations and fractal time random walks. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[17] R. Gorenflo,et al. Discrete random walk models for space-time fractional diffusion , 2002, cond-mat/0702072.
[18] M. Shlesinger,et al. Beyond Brownian motion , 1996 .
[19] Christian Berg,et al. Potential Theory on Locally Compact Abelian Groups , 1975 .
[20] R. Gorenflo,et al. Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .
[21] P. Lee,et al. 14. Simulation and Chaotic Behaviour of α‐Stable Stochastic Processes , 1995 .
[22] Barkai,et al. From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[23] R. Hilfer. Applications Of Fractional Calculus In Physics , 2000 .
[24] V. Zolotarev,et al. Chance and Stability, Stable Distributions and Their Applications , 1999 .
[25] M. Shlesinger,et al. Stochastic pathway to anomalous diffusion. , 1987, Physical review. A, General physics.
[26] M. Caputo. Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .
[27] D. Widder,et al. The Laplace Transform , 1943, The Mathematical Gazette.
[28] E. Barkai. CTRW pathways to the fractional diffusion equation , 2001, cond-mat/0108024.
[29] E. Montroll,et al. Random Walks on Lattices. II , 1965 .
[30] P. M. Lee,et al. Random Walks and Random Environments: Volume 1: Random Walks , 1995 .
[31] Elliott W. Montroll,et al. Nonequilibrium phenomena. II - From stochastics to hydrodynamics , 1984 .
[32] Ken-iti Sato. Lévy Processes and Infinitely Divisible Distributions , 1999 .
[33] R. Gorenflo,et al. Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.
[34] Walter L. Smith. Renewal Theory and its Ramifications , 1958 .
[35] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[36] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[37] R. Metzler,et al. Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation , 2002 .
[38] Francesco Mainardi,et al. Random walk models approximating symmetric space-fractional diffusion processes , 2012, 1210.6589.
[39] V. Yu. Gonchar,et al. A model for persistent Levy motion , 2000 .
[40] Hitoshi Kumanogō,et al. Pseudo-differential operators , 1982 .
[41] Hideki Takayasu,et al. Fractals in the Physical Sciences , 1990 .
[42] R. Gorenflo,et al. Fractional calculus and continuous-time finance II: the waiting-time distribution , 2000, cond-mat/0006454.
[43] R. Gorenflo,et al. Fractional diffusion: probability distributions and random walk models , 2002 .
[44] W. R. Schneider,et al. Stable distributions: Fox function representation and generalization , 1986 .
[45] Hari M. Srivastava,et al. The H-functions of one and two variables, with applications , 1982 .
[46] A. Weron,et al. Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .
[47] P. Levy. Théorie de l'addition des variables aléatoires , 1955 .
[48] D. Applebaum. Stable non-Gaussian random processes , 1995, The Mathematical Gazette.
[49] Arak M. Mathai,et al. The H-Function with Applications in Statistics and Other Disciplines. , 1981 .
[50] P. Butzer,et al. AN INTRODUCTION TO FRACTIONAL CALCULUS , 2000 .
[51] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[52] Francesco Mainardi,et al. Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.
[53] George Weiss,et al. Random walks and random environments, volume 1: Random walks , 1996 .
[54] Salvatore Pincherle: the pioneer of the Mellin-Barnes integrals , 2003, math/0702520.
[55] Alexander I. Saichev,et al. Fractional kinetic equations: solutions and applications. , 1997, Chaos.
[56] Francesco Mainardi,et al. The fractional Fick's law for non-local transport processes , 2001 .
[57] G. Weiss. Aspects and Applications of the Random Walk , 1994 .
[58] Enrico Scalas,et al. Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .