Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk

A physical-mathematical approach to anomalous diffusion may be based on fractional diffusion equations and related random walk models. The fundamental solutions of these equations can be interpreted as probability densities evolving in time of peculiar self-similar stochastic processes: an integral representation of these solutions is here presented. A more general approach to anomalous diffusion is known to be provided by the master equation for a continuous time random walk (CTRW). We show how this equation reduces to our fractional diffusion equation by a properly scaled passage to the limit of compressed waiting times and jump widths. Finally, we describe a method of simulation and display (via graphics) results of a few numerical case studies.

[1]  I. Podlubny Fractional differential equations , 1998 .

[2]  Gianni De Fabritiis,et al.  Discrete random walk models for symmetric Lévy–Feller diffusion processes , 1999 .

[3]  R. Hilfer FRACTIONAL TIME EVOLUTION , 2000 .

[4]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[5]  Linear relaxation processes governed by fractional symmetric kinetic equations , 1999, cond-mat/9910091.

[6]  E. Montroll,et al.  CHAPTER 2 – On an Enriched Collection of Stochastic Processes* , 1979 .

[7]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[8]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[9]  M. Riesz L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .

[10]  Mark M. Meerschaert,et al.  STOCHASTIC SOLUTIONS FOR FRACTIONAL CAUCHY PROBLEMS , 2003 .

[11]  Francesco Mainardi,et al.  Approximation of Levy-Feller Diffusion by Random Walk , 1999 .

[12]  Marcin Kotulski,et al.  Asymptotic distributions of continuous-time random walks: A probabilistic approach , 1995 .

[13]  K. Miller,et al.  Completely monotonic functions , 2001 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Francesco Mainardi,et al.  Linear models of dissipation in anelastic solids , 1971 .

[16]  Hilfer,et al.  Fractional master equations and fractal time random walks. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  R. Gorenflo,et al.  Discrete random walk models for space-time fractional diffusion , 2002, cond-mat/0702072.

[18]  M. Shlesinger,et al.  Beyond Brownian motion , 1996 .

[19]  Christian Berg,et al.  Potential Theory on Locally Compact Abelian Groups , 1975 .

[20]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[21]  P. Lee,et al.  14. Simulation and Chaotic Behaviour of α‐Stable Stochastic Processes , 1995 .

[22]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[24]  V. Zolotarev,et al.  Chance and Stability, Stable Distributions and Their Applications , 1999 .

[25]  M. Shlesinger,et al.  Stochastic pathway to anomalous diffusion. , 1987, Physical review. A, General physics.

[26]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[27]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[28]  E. Barkai CTRW pathways to the fractional diffusion equation , 2001, cond-mat/0108024.

[29]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[30]  P. M. Lee,et al.  Random Walks and Random Environments: Volume 1: Random Walks , 1995 .

[31]  Elliott W. Montroll,et al.  Nonequilibrium phenomena. II - From stochastics to hydrodynamics , 1984 .

[32]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[33]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[34]  Walter L. Smith Renewal Theory and its Ramifications , 1958 .

[35]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[36]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[37]  R. Metzler,et al.  Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation , 2002 .

[38]  Francesco Mainardi,et al.  Random walk models approximating symmetric space-fractional diffusion processes , 2012, 1210.6589.

[39]  V. Yu. Gonchar,et al.  A model for persistent Levy motion , 2000 .

[40]  Hitoshi Kumanogō,et al.  Pseudo-differential operators , 1982 .

[41]  Hideki Takayasu,et al.  Fractals in the Physical Sciences , 1990 .

[42]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance II: the waiting-time distribution , 2000, cond-mat/0006454.

[43]  R. Gorenflo,et al.  Fractional diffusion: probability distributions and random walk models , 2002 .

[44]  W. R. Schneider,et al.  Stable distributions: Fox function representation and generalization , 1986 .

[45]  Hari M. Srivastava,et al.  The H-functions of one and two variables, with applications , 1982 .

[46]  A. Weron,et al.  Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .

[47]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[48]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[49]  Arak M. Mathai,et al.  The H-Function with Applications in Statistics and Other Disciplines. , 1981 .

[50]  P. Butzer,et al.  AN INTRODUCTION TO FRACTIONAL CALCULUS , 2000 .

[51]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[52]  Francesco Mainardi,et al.  Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.

[53]  George Weiss,et al.  Random walks and random environments, volume 1: Random walks , 1996 .

[54]  Salvatore Pincherle: the pioneer of the Mellin-Barnes integrals , 2003, math/0702520.

[55]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[56]  Francesco Mainardi,et al.  The fractional Fick's law for non-local transport processes , 2001 .

[57]  G. Weiss Aspects and Applications of the Random Walk , 1994 .

[58]  Enrico Scalas,et al.  Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .