A highly accurate explicit symplectic ERKN method for multi-frequency and multidimensional oscillatory Hamiltonian systems

The numerical integration of Hamiltonian systems with multi-frequency and multidimensional oscillatory solutions is encountered frequently in many fields of the applied sciences. In this paper, we firstly summarize the extended Runge–Kutta–Nyström (ERKN) methods proposed by Wu et al. (Comput. Phys. Comm. 181:1873–1887, (2010)) for multi-frequency and multidimensional oscillatory systems and restate the order conditions and symplecticity conditions for the explicit ERKN methods. Secondly, we devote to exploring the explicit symplectic multi-frequency and multidimensional ERKN methods of order five based on the symplecticity conditions and order conditions. A five-stage explicit symplectic multi-frequency and multidimensional ERKN method of order five with some small residuals is proposed and its stability and phase properties are analyzed. It is shown that the new method is dispersive of order six. Numerical experiments are carried out and the numerical results demonstrate that the new method is much more efficient than the methods appeared in the scientific literature.

[1]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[2]  Bin Wang,et al.  Novel improved multidimensional Störmer-Verlet formulas with applications to four aspects in scientific computation , 2013, Math. Comput. Model..

[3]  L. Vázquez,et al.  Analysis of Four Numerical Schemes for a Nonlinear Klein-Gordon Equation , 1990 .

[4]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[5]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[6]  Hans Van de Vyver,et al.  A symplectic exponentially fitted modified Runge–Kutta–Nyström method for the numerical integration of orbital problems , 2005 .

[7]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[8]  Hans Van de Vyver,et al.  Scheifele two-step methods for perturbed oscillators , 2009 .

[9]  Bin Wang,et al.  Multidimensional adapted Runge-Kutta-Nyström methods for oscillatory systems , 2010, Comput. Phys. Commun..

[10]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[11]  Xinyuan Wu,et al.  A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems , 2013, J. Comput. Phys..

[12]  Robert D. Skeel,et al.  Canonical Runge-Kutta-Nystro¨m methods of orders five and six , 1994 .

[13]  Jianlin Xia,et al.  Order conditions for ARKN methods solving oscillatory systems , 2009, Comput. Phys. Commun..

[14]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[15]  J. M. Franco New methods for oscillatory systems based on ARKN methods , 2006 .

[16]  Xinyuan Wu,et al.  A new high precision energy-preserving integrator for system of oscillatory second-order differential equations , 2012 .

[17]  Xinyuan Wu,et al.  Structure-Preserving Algorithms for Oscillatory Differential Equations , 2013 .

[18]  Xinyuan Wu,et al.  A note on stability of multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems☆ , 2012 .

[19]  Marlis Hochbruck,et al.  A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.

[20]  Bin Wang,et al.  ERKN integrators for systems of oscillatory second-order differential equations , 2010, Comput. Phys. Commun..

[21]  J. M. Sanz-Serna,et al.  Order conditions for canonical Runge-Kutta-Nyström methods , 1992 .

[22]  Ernst Hairer,et al.  Long-Time Energy Conservation of Numerical Methods for Oscillatory Differential Equations , 2000, SIAM J. Numer. Anal..

[23]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[24]  E. Hairer,et al.  Numerical Energy Conservation for Multi-Frequency Oscillatory Differential Equations , 2005 .

[25]  Jianlin Xia,et al.  Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods , 2012 .

[26]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[27]  H. Weitzner,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[28]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[29]  T. E. Simos,et al.  Exponentially fitted symplectic integrator. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Matthias J. Ehrhardt,et al.  Geometric Numerical Integration Structure-Preserving Algorithms for QCD Simulations , 2012 .

[31]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[32]  J. M. Franco Exponentially fitted explicit Runge-Kutta-Nyström methods , 2004 .