On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating

Abstract.In previous work, the authors provided a foundation for the theory of variable metric proximal point algorithms in Hilbert space. In that work conditions are developed for global, linear, and super–linear convergence. This paper focuses attention on two matrix secant updating strategies for the finite dimensional case. These are the Broyden and BFGS updates. The BFGS update is considered for application in the symmetric case, e.g., convex programming applications, while the Broyden update can be applied to general monotone operators. Subject to the linear convergence of the iterates and a quadratic growth condition on the inverse of the operator at the solution, super–linear convergence of the iterates is established for both updates. These results are applied to show that the Chen–Fukushima variable metric proximal point algorithm is super–linearly convergent when implemented with the BFGS update.

[1]  Claude Lemaréchal,et al.  An approach to variable metric bundle methods , 1993, System Modelling and Optimization.

[2]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[3]  Claude Lemaréchal,et al.  Variable metric bundle methods: From conceptual to implementable forms , 1997, Math. Program..

[4]  Jong-Shi Pang,et al.  Nonsmooth Equations: Motivation and Algorithms , 1993, SIAM J. Optim..

[5]  J. Nocedal,et al.  A tool for the analysis of Quasi-Newton methods with application to unconstrained minimization , 1989 .

[6]  J. Frédéric Bonnans,et al.  A family of variable metric proximal methods , 1995, Math. Program..

[7]  Xiaojun Chen,et al.  A preconditioning proximal newton method for nondifferentiable convex optimization , 1997, Math. Program..

[8]  J. Burke,et al.  On the Local Super-Linear Convergence of a Matrix Secant Implementation of the Variable Metric Proximal Point Algorithm for Monotone Operators , 1998 .

[9]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[10]  J. Burke,et al.  A Variable Metric Proximal Point Algorithm for Monotone Operators , 1999 .

[11]  Masao Fukushima,et al.  A Globally and Superlinearly Convergent Algorithm for Nonsmooth Convex Minimization , 1996, SIAM J. Optim..

[12]  Masao Fukushima,et al.  A descent algorithm for nonsmooth convex optimization , 1984, Math. Program..

[13]  Xiaojun Chen,et al.  Proximal quasi-Newton methods for nondifferentiable convex optimization , 1999, Math. Program..

[14]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[15]  J. J. Moré,et al.  A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .

[16]  Defeng Sun,et al.  Quasi-Newton Bundle-Type Methods for Nondifferentiable Convex Optimization , 1998, SIAM J. Optim..

[17]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[18]  Robert Mifflin,et al.  A quasi-second-order proximal bundle algorithm , 1996, Math. Program..