On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating
暂无分享,去创建一个
[1] Claude Lemaréchal,et al. An approach to variable metric bundle methods , 1993, System Modelling and Optimization.
[2] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[3] Claude Lemaréchal,et al. Variable metric bundle methods: From conceptual to implementable forms , 1997, Math. Program..
[4] Jong-Shi Pang,et al. Nonsmooth Equations: Motivation and Algorithms , 1993, SIAM J. Optim..
[5] J. Nocedal,et al. A tool for the analysis of Quasi-Newton methods with application to unconstrained minimization , 1989 .
[6] J. Frédéric Bonnans,et al. A family of variable metric proximal methods , 1995, Math. Program..
[7] Xiaojun Chen,et al. A preconditioning proximal newton method for nondifferentiable convex optimization , 1997, Math. Program..
[8] J. Burke,et al. On the Local Super-Linear Convergence of a Matrix Secant Implementation of the Variable Metric Proximal Point Algorithm for Monotone Operators , 1998 .
[9] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .
[10] J. Burke,et al. A Variable Metric Proximal Point Algorithm for Monotone Operators , 1999 .
[11] Masao Fukushima,et al. A Globally and Superlinearly Convergent Algorithm for Nonsmooth Convex Minimization , 1996, SIAM J. Optim..
[12] Masao Fukushima,et al. A descent algorithm for nonsmooth convex optimization , 1984, Math. Program..
[13] Xiaojun Chen,et al. Proximal quasi-Newton methods for nondifferentiable convex optimization , 1999, Math. Program..
[14] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[15] J. J. Moré,et al. A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .
[16] Defeng Sun,et al. Quasi-Newton Bundle-Type Methods for Nondifferentiable Convex Optimization , 1998, SIAM J. Optim..
[17] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[18] Robert Mifflin,et al. A quasi-second-order proximal bundle algorithm , 1996, Math. Program..