The Na+2Cl–K+ cotransporter in the rectal gland of Squalus acanthias is activated by cell shrinkage

[1]  Turner Rj,et al.  New insights into the upregulation and function of the salivary Na+-K+-2Cl- cotransporter. , 1998 .

[2]  F. Lang,et al.  Regulation of the Na+2Cl–K+ cotransporter in in vitro perfused rectal gland tubules of Squalus acanthias , 1998, Pflügers Archiv.

[3]  R. Greger,et al.  Does stimulation of NaCl secretion in in vitro perfused rectal gland tubules of Squalus acanthias increase membrane capacitance? , 1998, Pflügers Archiv.

[4]  E. Hoffmann,et al.  Na+-K+-2Cl-cotransport in Ehrlich cells: regulation by protein phosphatases and kinases. , 1998, American journal of physiology. Cell physiology.

[5]  E. Hoffmann,et al.  Sensors and signal transduction in the activation of cell volume regulatory ion transport systems. , 1998, Contributions to nephrology.

[6]  D. Häussinger,et al.  Functional significance of cell volume regulatory mechanisms. , 1998, Physiological reviews.

[7]  K. Kunzelmann,et al.  Regulation of Ion Transport in Colonic Crypts , 1997 .

[8]  J. Matthews,et al.  Na:K:2Cl Cotransporter (NKCC) of Intestinal Epithelial Cells , 1996, The Journal of Biological Chemistry.

[9]  C. Lytle,et al.  Regulatory phosphorylation of the secretory Na-K-Cl cotransporter: modulation by cytoplasmic Cl. , 1996, The American journal of physiology.

[10]  W. C. O'Neill,et al.  Volume-sensitive myosin phosphorylation in vascular endothelial cells: correlation with Na-K-2Cl cotransport. , 1995, The American journal of physiology.

[11]  J. D. del Castillo,et al.  Activation of an Na+/K+/2Cl- cotransport system by phosphorylation in crypt cells isolated from guinea pig distal colon. , 1995, Gastroenterology.

[12]  P. Dunham,et al.  Membrane mechanisms and intracellular signalling in cell volume regulation. , 1995, International review of cytology.

[13]  J. Foskett,et al.  Na+ transport pathways in secretory acinar cells: membrane cross talk mediated by [Cl-]i. , 1994, The American journal of physiology.

[14]  J. Smith,et al.  Na-K-2Cl cotransport in intestinal epithelial cells. Influence of chloride efflux and F-actin on regulation of cotransporter activity and bumetanide binding. , 1994, The Journal of biological chemistry.

[15]  J. A. Payne,et al.  Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[16]  S. Muallem,et al.  Regulatory interaction of ATP Na+ and Cl- in the turnover cycle of the NaK2Cl cotransporter , 1993, The Journal of general physiology.

[17]  O H Petersen,et al.  Stimulus‐secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. , 1992, The Journal of physiology.

[18]  A. Nairn,et al.  Identification and localization of a dogfish homolog of human cystic fibrosis transmembrane conductance regulator. , 1991, The Journal of biological chemistry.

[19]  E. B. Pewitt,et al.  The regulation of Na/K/2Cl cotransport and bumetanide binding in avian erythrocytes by protein phosphorylation and dephosphorylation. Effects of kinase inhibitors and okadaic acid. , 1990, The Journal of biological chemistry.

[20]  R. Greger,et al.  Sodium Chloride Secretion in Rectal Gland of Dogfish, Squalus acanthias , 1986 .

[21]  E. Frömter Viewing the kidney through microelectrodes. , 1984, The American journal of physiology.