Second-order correction to perfect pairing: an inexpensive electronic structure method for the treatment of strong electron-electron correlations.

We have formulated a second-order perturbative correction for perfect-pairing wave functions [PP2] based on similarity-transformed perturbation techniques in coupled cluster theory. The perfect-pairing approximation is used to obtain a simple reference wave function which can qualitatively describe bond breaking, diradicals, and other highly correlated systems, and the perturbative correction accounts for the dynamical correlation. An efficient implementation of this correction using the resolution of the identity approximation enables PP2 to be computed at a cost only a few times larger than that of canonical MP2 for systems with hundreds of active electrons and tens of heavy atoms. PP2 significantly improves on MP2 predictions in various systems with a challenging electronic structure.

[1]  W. Goddard,et al.  Electron correlation, basis sets, and the methylene singlet–triplet gap , 1987 .

[2]  M. Head‐Gordon,et al.  What is the nature of the long bond in the TCNE22−π-dimer? , 2004 .

[3]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[4]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[5]  A. Yencha,et al.  High-resolution threshold photoelectron spectroscopy of molecular fluorine , 1996 .

[6]  M. Schütz,et al.  Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. , 2005, The Journal of chemical physics.

[7]  So Hirata,et al.  Erratum: “Perturbative corrections to coupled-cluster and equation-of-motion coupled-cluster energies: A determinantal analysis” [J. Chem. Phys. 114, 3919 (2001)] , 2001 .

[8]  W. Goddard,et al.  Correlation‐consistent singlet–triplet gaps in substituted carbenes , 1988 .

[9]  Robert B. Murphy,et al.  Generalized Møller—Plesset perturbation theory applied to general MCSCF reference wave functions , 1991 .

[10]  I. I. Ukrainskii New variational function in the theory of quasi-one-dimensional metals , 1977 .

[11]  William A. Goddard,et al.  GVB–RP: A reliable MCSCF wave function for large systems , 1999 .

[12]  R. Friesner,et al.  Calculation of atomization energies by a multiconfigurational localized perturbation theory—Application for closed shell cases , 1999 .

[13]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[14]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[15]  Peter Pulay,et al.  Generalized Mo/ller–Plesset perturbation theory: Second order results for two‐configuration, open‐shell excited singlet, and doublet wave functions , 1989 .

[16]  W. Goddard,et al.  Generalized valence bond description of the low-lying states of formaldehyde , 1975 .

[17]  J. Cullen,et al.  Is GVB‐CI superior to CASSCF? , 1999 .

[18]  Vitaly A. Rassolov,et al.  A geminal model chemistry , 2002 .

[19]  Gregory J. O. Beran,et al.  Local Correlation Models , 2003, International Conference on Computational Science.

[20]  Edward F. Valeev,et al.  Estimates of the Ab Initio Limit for π−π Interactions: The Benzene Dimer , 2002 .

[21]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[22]  Martin Head-Gordon,et al.  A second-order perturbative correction to the coupled-cluster singles and doubles method: CCSD(2) , 2001 .

[23]  C. David Sherrill,et al.  Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-Displaced Configurations , 2004 .

[24]  T. Voorhis,et al.  Quadratic coupled-cluster doubles: Implementation and assessment of perfect pairing optimized geometries , 2002 .

[25]  Jeppe Olsen,et al.  Full configuration interaction benchmarking of coupled-cluster models for the lowest singlet energy surfaces of N2 , 2000 .

[26]  Trygve Helgaker,et al.  Accuracy of atomization energies and reaction enthalpies in standard and extrapolated electronic wave function/basis set calculations , 2000 .

[27]  Richard A. Friesner,et al.  Application and development of multiconfigurational localized perturbation theory , 2001 .

[28]  R. E. Del Sesto,et al.  Exceptionally Long (≥2.9 Å) C-C Bonds between [TCNE]- Ions: Two-Electron, Four-Center π*-π* C-C Bonding in π-[TCNE]22. , 2001, Angewandte Chemie.

[29]  Martin Head-Gordon,et al.  The Theoretical Prediction of Molecular Radical Species: a Systematic Study of Equilibrium Geometries and Harmonic Vibrational Frequencies , 2001 .

[30]  R. P. Messmer,et al.  On the size extensivity of second-order Møller–Plesset perturbation theory based on a perfectly-paired generalized valence bond reference wavefunction , 2001 .

[31]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[32]  Anna I. Krylov,et al.  Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster doubles model , 1998 .

[33]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[34]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[35]  T. Voorhis,et al.  Implementation of generalized valence bond-inspired coupled cluster theories , 2002 .

[36]  Martin Head-Gordon,et al.  A nonorthogonal approach to perfect pairing , 2000 .

[37]  Feng Xu,et al.  Geminal model chemistry II. Perturbative corrections. , 2004, The Journal of chemical physics.

[38]  W. D. Allen,et al.  Hartree-Fock orbital instability envelopes in highly correlated single-reference wave functions , 1997 .

[39]  Richard L. Jaffe,et al.  A quantum chemistry study of benzene dimer , 1996 .

[40]  J. Cullen,et al.  Generalized valence bond solutions from a constrained coupled cluster method , 1996 .

[41]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[42]  Richard P. Messmer,et al.  Calculations using generalized valence bond based Møller–Plesset perturbation theory , 2001 .

[43]  Pavel Hobza,et al.  Potential Energy Surface for the Benzene Dimer. Results of ab Initio CCSD(T) Calculations Show Two Nearly Isoenergetic Structures: T-Shaped and Parallel-Displaced , 1996 .

[44]  So Hirata,et al.  Perturbative corrections to coupled-cluster and equation-of-motion coupled-cluster energies: A determinantal analysis , 2001 .

[45]  Martin Head-Gordon,et al.  A second-order correction to singles and doubles coupled-cluster methods based on a perturbative expansion of a similarity-transformed Hamiltonian , 2000 .

[46]  Richard A. Friesner,et al.  Pseudospectral localized generalized Mo/ller–Plesset methods with a generalized valence bond reference wave function: Theory and calculation of conformational energies , 1997 .

[47]  W. Goddard,et al.  Correlation‐consistent configuration interaction: Accurate bond dissociation energies from simple wave functions , 1988 .

[48]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[49]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[50]  Anna I. Krylov,et al.  Second order perturbation corrections to singles and doubles coupled-cluster methods: General theory and application to the valence optimized doubles model , 2000 .

[51]  M. Head‐Gordon,et al.  Unrestricted perfect pairing: the simplest wave-function-based model chemistry beyond mean field. , 2005, The journal of physical chemistry. A.

[52]  J. Kochi,et al.  Stable (long-bonded) dimers via the quantitative self-association of different cationic, anionic, and uncharged pi-radicals: structures, energetics, and optical transitions. , 2003, Journal of the American Chemical Society.

[53]  Masuhiro Mikami,et al.  Effects of the higher electron correlation correction on the calculated intermolecular interaction energies of benzene and naphthalene dimers: comparison between MP2 and CCSD(T) calculations , 2000 .

[54]  B. Roos The Complete Active Space Self‐Consistent Field Method and its Applications in Electronic Structure Calculations , 2007 .

[55]  Martin Head-Gordon,et al.  A perturbative correction to the quadratic coupled-cluster doubles method for higher excitations , 2002 .

[56]  Martin Head-Gordon,et al.  The imperfect pairing approximation , 2000 .

[57]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[58]  M. Head‐Gordon,et al.  Approaching closed-shell accuracy for radicals using coupled cluster theory with perturbative triple substitutions , 2003 .

[59]  Robert B. Murphy,et al.  Generalized Mo/ller–Plesset and Epstein–Nesbet perturbation theory applied to multiply bonded molecules , 1992 .

[60]  M. Head‐Gordon,et al.  Can coupled cluster singles and doubles be approximated by a valence active space model , 2002 .

[61]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .

[62]  John F. Stanton,et al.  The accurate determination of molecular equilibrium structures , 2001 .

[63]  Jon Baker,et al.  Q‐Chem 2.0: a high‐performance ab initio electronic structure program package , 2000, J. Comput. Chem..

[64]  Martin Head-Gordon,et al.  Connections between coupled cluster and generalized valence bond theories , 2001 .