Hybrid technologies: The future of energy efficient desalination – A review

Abstract Further reduction in energy consumption is an attractive prospect for both well-established technologies such as reverse osmosis and electrodialysis, and for emerging desalination technologies struggling to reach commercialization. One way of reducing energy consumption and meeting target water demands is by playing on the strengths of two or more processes through hybridization. Other key objectives of hybridization include flexible operation, increased plant capacity and/or meeting specific water quality requirements. Here, we provide a critical review of hybrid desalination systems, and methods used to optimize such systems with respect to these objectives. Providing a brief overview of current status and energy consumption in both mature and developing desalination processes, we review the advantages and challenges of hybridization of these processes to overcome limitations of standalone systems. For instance, coupling of electrodialysis with reverse osmosis helps overcome the low recovery of reverse osmosis systems. On the other hand, reverse osmosis can be coupled with membrane distillation for treatment of hypersaline feed solutions or for zero liquid discharge brine treatment. Forward osmosis relies on hybridization with a low-cost separation process to recover the draw solution. Some promising candidates for this have been nanofiltration and membrane distillation. Membrane distillation hybrids are suitable when thermal energy can be supplied at very low costs. We also review the applicability of salinity gradient power technologies with desalination systems and identify gaps that need to be addressed for effective upscaling and implementation of such hybrid systems.

[1]  J. Feher 2.7 – Osmosis and Osmotic Pressure , 2017 .

[2]  Younggy Kim,et al.  Treatment of Model Inland Brackish Groundwater Reverse Osmosis Concentrate with Electrodialysis – Part I: sensitivity to superficial velocity , 2014 .

[3]  Jian Zuo,et al.  Membrane development and energy analysis of freeze desalination-vacuum membrane distillation hybrid systems powered by LNG regasification and solar energy , 2019, Desalination.

[4]  Tongwen Xu,et al.  Electrodialysis of concentrated brine from RO plant to produce coarse salt and freshwater , 2014 .

[5]  E. Korngold Electrodialysis unit: Optimization and calculation of energy requirement , 1982 .

[6]  J. Post,et al.  Salinity-gradient power : Evaluation of pressure-retarded osmosis and reverse electrodialysis , 2007 .

[7]  Ho Kyong Shon,et al.  Pressure retarded osmosis (PRO) for integrating seawater desalination and wastewater reclamation: Energy consumption and fouling , 2015 .

[8]  Iris Sutzkover-Gutman,et al.  Feed water pretreatment for desalination plants , 2010 .

[9]  Yuping Li,et al.  Novel three-dimensional superhydrophobic and strength-enhanced electrospun membranes for long-term membrane distillation , 2017 .

[10]  X. D. Chen,et al.  Freezing‐Melting Process and Desalination: I. Review of the State‐of‐the‐Art , 2006 .

[11]  Tai‐Shung Chung,et al.  Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation , 2018 .

[12]  N. Hilal,et al.  Brackish water desalination for agriculture: Assessing the performance of inorganic fertilizer draw solutions , 2019, Desalination.

[13]  Matthias Rommel,et al.  Solar thermal-driven desalination plants based on membrane distillation☆ , 2003 .

[14]  Jack Gilron,et al.  Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy , 2012 .

[15]  M. Khayet,et al.  A novel profiled core–shell nanofibrous membrane for wastewater treatment by direct contact membrane distillation , 2016 .

[16]  Chip Harris,et al.  Energy recovery for membrane desalination , 1999 .

[17]  Hyukjin J. Kwon,et al.  Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination , 2016, Scientific Reports.

[18]  Hani Sewilam,et al.  Investigating fertilizer drawn forward osmosis process for groundwater desalination for irrigation in Egypt , 2016 .

[19]  Nidal Hilal,et al.  A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants , 2015 .

[20]  Menachem Elimelech,et al.  Toward Resource Recovery from Wastewater: Extraction of Phosphorus from Digested Sludge Using a Hybrid Forward Osmosis–Membrane Distillation Process , 2014 .

[21]  John H. Lienhard,et al.  Second law analysis of reverse osmosis desalination plants: An alternative design using pressure retarded osmosis , 2011 .

[22]  Alanood A. Alsarayreh,et al.  Evaluation and minimisation of energy consumption in a medium-scale reverse osmosis brackish water desalination plant , 2020 .

[23]  Praveen Linga,et al.  LNG cold energy utilization: Prospects and challenges , 2019, Energy.

[24]  A. Ismail,et al.  Nanofiltration Membranes: Synthesis, Characterization, and Applications , 2016 .

[25]  H. Strathmann Electrodialysis, a mature technology with a multitude of new applications , 2010 .

[26]  Ruth Mossad,et al.  A Review of the Water Desalination Systems Integrated with Renewable Energy , 2017 .

[27]  Peng Wang,et al.  Thermoresponsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation , 2014 .

[28]  J. A. Fleck THE INFLUENCE OF PRESSURE ON BOILING WATER REACTOR DYNAMIC BEHAVIOR AT ATMOSPHERIC PRESSURE , 1961 .

[29]  Xing Yang,et al.  Evaluation of hollow fiber-based direct contact and vacuum membrane distillation systems using aspen process simulation , 2014 .

[30]  Xiao Dong Chen,et al.  Experimental study of wash columns used for separating ice from ice-slurry , 2008 .

[31]  Y. R. Mayhew,et al.  Thermodynamic and transport properties of fluids , 1967 .

[32]  Francesco Giacalone,et al.  Exergy analysis of reverse electrodialysis , 2018 .

[33]  Harry Bruning,et al.  Seawater predesalination with electrodialysis , 2014 .

[34]  A. Akbarzadeh,et al.  Sustainable zero liquid discharge desalination (SZLDD) , 2016 .

[35]  Andrzej G. Chmielewski,et al.  Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation , 1999 .

[36]  F. Benyahia Membrane-Distillation in Desalination , 2019 .

[37]  N. M. Al-Najem,et al.  Energy consumption in equivalent work by different desalting methods: case study for Kuwait , 2003 .

[38]  G. Rutledge,et al.  Desalination by Membrane Distillation using Electrospun Polyamide Fiber Membranes with Surface Fluorination by Chemical Vapor Deposition. , 2015, ACS applied materials & interfaces.

[39]  Nawshad Akther,et al.  Recent advancements in forward osmosis desalination: A review , 2015 .

[40]  S. K. Thampy,et al.  Development of hybrid electrodialysis-reverse osmosis domestic desalination unit for high recovery of product water , 2011 .

[41]  Amy E. Childress,et al.  Forward osmosis: Principles, applications, and recent developments , 2006 .

[42]  M. Al-Shammiri,et al.  Multi-effect distillation plants: state of the art , 1999 .

[43]  Abdul Wahab Mohammad,et al.  Characterization and Prediction of Nanofiltration Membrane Performance—A General Assessment , 1998 .

[44]  A. M. Helal,et al.  Optimal design of hybrid RO/MSF desalination plants Part II: Results and discussion , 2004 .

[45]  Akili D. Khawaji,et al.  Advances in seawater desalination technologies , 2008 .

[46]  Chuanhui Huang,et al.  Electrodialysis‐based separation technologies: A critical review , 2008 .

[47]  R. Baker Membrane Technology and Applications , 1999 .

[48]  Eric M.V. Hoek,et al.  Modeling the effects of fouling on full-scale reverse osmosis processes , 2008 .

[49]  Simon Grasman,et al.  Upscaling Reverse Electrodialysis , 2018, Environmental science & technology.

[50]  Bopeng Zhang,et al.  Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review , 2015 .

[51]  Cong-jie Gao,et al.  A review of graphene-based separation membrane: Materials, characteristics, preparation and applications , 2018, Desalination.

[52]  M. Nasser,et al.  The status of forward osmosis technology implementation , 2019, Desalination.

[53]  Jian Jin,et al.  Novel Janus Membrane for Membrane Distillation with Simultaneous Fouling and Wetting Resistance. , 2017, Environmental science & technology.

[54]  Seung-Hyun Kim,et al.  Evaluation of economic feasibility of reverse osmosis and membrane distillation hybrid system for desalination , 2016 .

[55]  Osman A. Hamed,et al.  Overview of hybrid desalination systems — current status and future prospects , 2005 .

[56]  N. Vlachakis,et al.  Energy consumption and membrane replacement cost for seawater RO desalination plants , 2003 .

[57]  M. Al-Far,et al.  Nanofiltration as a cost-saving desalination process , 2019, SN Applied Sciences.

[58]  H. Shon,et al.  A novel electrospun, hydrophobic, and elastomeric styrene-butadiene-styrene membrane for membrane distillation applications , 2018 .

[59]  Ngai Yin Yip,et al.  Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency. , 2014, Environmental science & technology.

[60]  Sherub Phuntsho,et al.  Fertiliser drawn forward osmosis process: Pilot-scale desalination of mine impaired water for fertigation , 2016 .

[61]  Mohammad Sadegh Hatamipour,et al.  A review on energy consumption of desalination processes , 2014 .

[62]  H. Chua,et al.  Introduction to Desalination , 2017 .

[63]  Linda Zou,et al.  Brackish water desalination by a hybrid forward osmosis-nanofiltration system using divalent draw solute , 2012 .

[64]  Biao Yu,et al.  Recent Advance on Draw Solutes Development in Forward Osmosis , 2018, Processes.

[65]  Ngai Yin Yip,et al.  Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis. , 2014, Environmental science & technology.

[66]  J. Crittenden,et al.  Unique applications and improvements of reverse electrodialysis: A review and outlook , 2020 .

[67]  Mohamed Khayet,et al.  Solar desalination by membrane distillation: Dispersion in energy consumption analysis and water production costs (a review) , 2013 .

[68]  M. Elimelech,et al.  The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies , 2020, Energy & Environmental Science.

[69]  D. Yang,et al.  A comprehensive review of energy consumption of seawater reverse osmosis desalination plants , 2019, Applied Energy.

[70]  Raphael Semiat,et al.  Energy issues in desalination processes. , 2008, Environmental science & technology.

[71]  H. El-Naser,et al.  Management of Scarce Water Resources: "A Middle Eastern Experience" , 2009 .

[72]  Lei Jiang,et al.  Energy Harvesting with Single‐Ion‐Selective Nanopores: A Concentration‐Gradient‐Driven Nanofluidic Power Source , 2010 .

[73]  Daniel R. Gonzalez,et al.  Membrane distillation: Perspectives for sustainable and improved desalination , 2017 .

[74]  N. Hilal,et al.  Solar powered desalination – Technology, energy and future outlook , 2019, Desalination.

[75]  Scientific The United Nations World Water Development Report 2018 , 2019, The United Nations World Water Development Report.

[76]  A. Mohammad,et al.  A study on producing composite nanofiltration membranes with optimized properties , 2003 .

[77]  Andrea Cipollina,et al.  Sustainable Energy from Salinity Gradients , 2016 .

[78]  Ali Diabat,et al.  Mathematical and optimization modelling in desalination: State-of-the-art and future direction , 2019, Desalination.

[79]  Guangzhi Zuo,et al.  Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application , 2013 .

[80]  M. Busch,et al.  Reducing energy consumption in seawater desalination , 2004 .

[81]  Mohammad Badruzzaman,et al.  Energy minimization strategies and renewable energy utilization for desalination: a review. , 2011, Water research.

[82]  B. Bruggen,et al.  Electrodialysis on RO concentrate to improve water recovery in wastewater reclamation , 2011 .

[83]  Enrico Drioli,et al.  Evaluation of energy requirements in membrane distillation , 2008 .

[84]  Hui Lu,et al.  Wind energy technologies integrated with desalination systems: Review and state-of-the-art , 2011 .

[85]  M. Mauter,et al.  Bacterial Nanocellulose Aerogel Membranes: Novel High-Porosity Materials for Membrane Distillation , 2016 .

[86]  Catherine Charcosset,et al.  A review of membrane processes and renewable energies for desalination , 2009 .

[87]  Fawzi Banat,et al.  Performance evaluation of the “large SMADES” autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan , 2007 .

[88]  Kamel Hooman,et al.  Low grade heat driven multi-effect distillation technology , 2011 .

[89]  Jinrong Liu,et al.  Forward osmosis membrane bioreactor using Bacillus and membrane distillation hybrid system for treating dairy wastewater , 2019, Environmental technology.

[90]  Andrew G. Livingston,et al.  Energy consumption for desalination — A comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes , 2016 .

[91]  Noreddine Ghaffour,et al.  Membrane-based seawater desalination: Present and future prospects , 2017 .

[92]  M. Tagliabue,et al.  Hybrid Forward Osmosis–Nanofiltration for Wastewater Reuse: System Design , 2019, Membranes.

[93]  Laura Chekli,et al.  A comprehensive review of hybrid forward osmosis systems , 2016 .

[94]  Jian Zuo,et al.  Novel PVDF membranes comprising n-butylamine functionalized graphene oxide for direct contact membrane distillation , 2017 .

[95]  Ibrahim S. Al-Mutaz,et al.  Characteristics of dual purpose MSF desalination plants , 2004 .

[96]  P. Englezos,et al.  The Freeze Concentration Process and its Applications , 2008 .

[97]  Tao He,et al.  Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system. , 2014, Water science and technology : a journal of the International Association on Water Pollution Research.

[98]  D. Zarzo,et al.  Desalination and energy consumption. What can we expect in the near future , 2018 .

[99]  Martin H. Peery,et al.  Energy efficiency breakdown of reverse osmosis and its implications on future innovation roadmap for desalination , 2015 .

[100]  Steve Siverns,et al.  UF membranes for RO desalination pretreatment , 2005 .

[101]  N. Hilal,et al.  Osmotic's potential: An overview of draw solutes for forward osmosis , 2017 .

[102]  G. S. Arcanjo,et al.  Draw solution solute selection for a hybrid forward osmosis-membrane distillation module: Effects on trace organic compound rejection, water flux and polarization , 2020 .

[103]  D. Imer,et al.  Forward Osmosis Membranes – A Review: Part II , 2018 .

[104]  Gjergj Dodbiba,et al.  Application of progressive freeze-concentration for desalination , 2013 .

[105]  Shichang Xu,et al.  Comparative study on stand-alone and parallel operating schemes of energy recovery device for SWRO system , 2010 .

[106]  C. Hélix-Nielsen,et al.  Pressure retarded osmosis from hypersaline sources — A review , 2017 .

[107]  Chuyang Y. Tang,et al.  Co-locating reverse electrodialysis with reverse osmosis desalination: Synergies and implications , 2017 .

[108]  Gary L. Amy,et al.  A hybrid multi-effect distillation and adsorption cycle , 2013 .

[109]  Michele Ciofalo,et al.  Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications , 2018 .

[110]  C. P. Koutsou,et al.  Analysis of specific energy consumption in reverse osmosis desalination processes , 2017 .

[111]  Ronan K. McGovern,et al.  On the potential of forward osmosis to energetically outperform reverse osmosis desalination , 2014 .

[112]  Sergei P. Agashichev,et al.  Reverse osmosis incorporated into existing cogenerating systems as a sustainable technological alternative for United Arab Emirates , 2003 .

[113]  Richard L. Stover,et al.  Seawater reverse osmosis with isobaric energy recovery devices , 2007 .

[114]  Samer Adham,et al.  Application of Membrane Distillation for desalting brines from thermal desalination plants , 2013 .

[115]  Samer Adham,et al.  Field evaluation of membrane distillation technologies for desalination of highly saline brines , 2014 .

[116]  Sohail Mirza,et al.  Reduction of energy consumption in process plants using nanofiltration and reverse osmosis , 2008 .

[117]  Jan Hoinkis,et al.  Renewable Energy Applications for Freshwater Production , 2012 .

[118]  T. Hodgkiess,et al.  Optimum feed temperatures for seawater reverse osmosis plant operation in an MSF/SWRO hybrid plant☆ , 2001 .

[119]  A. Mohammad,et al.  Nanofiltration membranes review: Recent advances and future prospects , 2015 .

[120]  Baltasar Peñate,et al.  Energy optimisation of existing SWRO (seawater reverse osmosis) plants with ERT (energy recovery tur , 2011 .

[121]  Lei Zhao,et al.  Integrated forward osmosis-membrane distillation process for human urine treatment. , 2016, Water research.

[122]  Siegfried Ripperger,et al.  Membranes and modules for transmembrane distillation , 1988 .

[123]  Nicholas Milne,et al.  Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation , 2013 .

[124]  B. A. Qureshi,et al.  Improvement in design of electrodialysis desalination plants by considering the Donnan potential , 2018, Desalination.

[125]  Hisham Ettouney Conventional Thermal Processes , 2009 .

[126]  Peng Wang,et al.  Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD). , 2014, Water research.

[127]  Giorgio Migliorini,et al.  Seawater reverse osmosis plant using the pressure exchanger for energy recovery: a calculation model** , 2004 .

[128]  Kilsung Kwon,et al.  Brine recovery using reverse electrodialysis in membrane-based desalination processes , 2015 .

[129]  Jianhua Zhang,et al.  Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment , 2016 .

[130]  June-Seok Choi,et al.  Recent progress of membrane distillation using electrospun nanofibrous membrane , 2014 .

[131]  A.M.R. Al-Marafie Prospects of Hybrid RO-MSF Desalting Plants in Kuwait , 1989 .

[132]  Ramato Ashu Tufa,et al.  Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage , 2018, Applied Energy.

[133]  M. A. Darwish Critical comparison between energy consumption in large capacity reverse osmosis (RO) and multistage flash (MSF) seawater desalting plants , 1987 .

[134]  A. Jakóbik-Kolon,et al.  Energy Consumption and Gypsum Scaling Assessment in a Hybrid Nanofiltration‐Reverse Osmosis‐Electrodialysis system , 2018 .

[135]  G. Zaragoza,et al.  Commercial scale membrane distillation for solar desalination , 2018, npj Clean Water.

[136]  John H. Lienhard,et al.  Energy efficiency of permeate gap and novel conductive gap membrane distillation , 2016 .

[137]  Qingchun Lv,et al.  A direct contact type ice generator for seawater freezing desalination using LNG cold energy , 2017, Desalination.

[138]  Laura Chekli,et al.  Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system. , 2016, Bioresource technology.

[139]  A. Jakóbik-Kolon,et al.  Prospects for high water recovery membrane desalination , 2017 .

[140]  How Yong Ng,et al.  A novel hybrid forward osmosis - nanofiltration (FO-NF) process for seawater desalination: Draw solution selection and system configuration , 2010 .

[141]  Dae Ryook Yang,et al.  Optimization on a new hybrid Forward osmosis-Electrodialysis-Reverse osmosis seawater desalination process , 2016 .

[142]  S. Vigneswaran,et al.  Membrane distillation crystallization for brine mining and zero liquid discharge: opportunities, challenges, and recent progress , 2019, Environmental Science: Water Research & Technology.

[143]  N. Hilal,et al.  Reverse osmosis pretreatment technologies and future trends: A comprehensive review , 2019, Desalination.

[144]  Enrico Drioli,et al.  Modeling the performance of flat and capillary membrane modules in vacuum membrane distillation , 2013 .

[145]  R. Field,et al.  Hybrid forward osmosis-membrane distillation system: Demonstration of technical feasibility , 2020, Journal of Water Process Engineering.

[146]  N. Hilal,et al.  Energy for desalination: A state-of-the-art review , 2020 .

[147]  Arthur Merkel,et al.  An Investigation on the Application of Pulsed Electrodialysis Reversal in Whey Desalination , 2019, International journal of molecular sciences.

[148]  Jongyoon Han,et al.  Desalination at overlimiting currents: State-of-the-art and perspectives , 2014 .

[149]  Clive B. Beggs,et al.  Theoretical approach of freeze seawater desalination on flake ice maker utilizing LNG cold energy , 2015 .

[150]  H. Hasan,et al.  Electrodialysis desalination for water and wastewater: A review , 2020, Chemical Engineering Journal.

[151]  Sherub Phuntsho,et al.  A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating , 2011 .

[152]  Ashlynn Suzanne Stillwell,et al.  Predicting the Specific Energy Consumption of Reverse Osmosis Desalination , 2016 .

[153]  C. G. Xie,et al.  High efficient seawater freezing desalination technology by utilizing cold energy of LNG , 2014 .

[154]  Chuyang Y. Tang,et al.  Recent developments and future perspectives of reverse electrodialysis technology: A review , 2018 .

[155]  H. Sharon,et al.  A review of solar energy driven desalination technologies , 2015 .

[156]  Zhen He,et al.  Electrodialysis recovery of reverse-fluxed fertilizer draw solute during forward osmosis water treatment , 2017 .

[157]  Tai‐Shung Chung,et al.  Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring , 2015 .

[158]  Zhao Zhengming,et al.  A review of renewable energy technologies integrated with desalination systems , 2009 .

[159]  Peng Wang,et al.  A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy. , 2012, Water research.

[160]  Wensheng Lin,et al.  A seawater freeze desalination prototype system utilizing LNG cold energy , 2017 .

[161]  Elias K. Stefanakos,et al.  Solar assisted sea water desalination: A review , 2013 .

[162]  John H. Lienhard,et al.  Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations , 2012 .

[163]  L. Martinez-diez,et al.  Desalination of brines by membrane distillation , 2001 .

[164]  Ronan K. McGovern,et al.  The benefits of hybridising electrodialysis with reverse osmosis , 2014 .

[165]  Ronan K. McGovern,et al.  Hybrid electrodialysis reverse osmosis system design and its optimization for treatment of highly saline brines , 2014 .

[166]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[167]  Akshay Deshmukh,et al.  Pressure-retarded osmosis for power generation from salinity gradients: is it viable? , 2016 .

[168]  Lisa Henthorne,et al.  State-of-the-art of reverse osmosis desalination pretreatment , 2015 .

[169]  E. Drioli,et al.  Membrane-based zero liquid discharge: Myth or reality? , 2017 .

[170]  S. Bouguecha,et al.  Small scale desalination pilots powered by renewable energy sources: case studies , 2005 .

[171]  Richard L. Stover,et al.  Industrial and brackish water treatment with closed circuit reverse osmosis , 2013 .

[172]  Carlos Legorreta,et al.  Plates - the next breakthrough in thermal desalination , 2001 .

[173]  Tai‐Shung Chung,et al.  The forward osmosis-pressure retarded osmosis (FO-PRO) hybrid system: A new process to mitigate membrane fouling for sustainable osmotic power generation , 2018, Journal of Membrane Science.

[174]  Rong Wang,et al.  Electrospun superhydrophobic membranes with unique structures for membrane distillation. , 2014, ACS applied materials & interfaces.

[175]  Ayesha Kausar,et al.  Advances in Polymeric Nanofiltration Membrane: A Review , 2017 .

[176]  Bopeng Zhang,et al.  Pressure Retarded Osmosis and Reverse Electrodialysis as Power Generation Membrane Systems , 2019, Current Trends and Future Developments on (Bio-) Membranes.

[177]  R. Baker,et al.  Membranes for power generation by pressure-retarded osmosis , 1981 .

[178]  S. Loeb,et al.  The Osmotic power plant , 1976 .

[179]  Robert L McGinnis,et al.  Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance , 2006 .

[180]  Youngjin Kim,et al.  Impact of reverse nutrient diffusion on membrane biofouling in fertilizer-drawn forward osmosis , 2017 .

[181]  Youngjin Kim,et al.  Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions. , 2017, Journal of environmental management.

[182]  Matthias Wessling,et al.  Practical potential of reverse electrodialysis as process for sustainable energy generation. , 2009, Environmental science & technology.

[183]  Yue Cui,et al.  Evaluation of hydroacid complex in the forward osmosis–membrane distillation (FO–MD) system for desalination , 2015 .

[184]  N. M. Al-Najem,et al.  Energy consumption by multi-stage flash and reverse osmosis desalters , 2000 .

[185]  E. Drioli,et al.  Membrane Distillation and Related Operations—A Review , 2005 .

[186]  Xuyun Wang,et al.  Feasibility research of potable water production via solar-heated hollow fiber membrane distillation system , 2009 .

[187]  Sheng Li,et al.  Osmotically and Thermally Isolated Forward Osmosis-Membrane Distillation (FO-MD) Integrated Module. , 2019, Environmental science & technology.

[188]  Benny D. Freeman,et al.  Reverse osmosis desalination: water sources, technology, and today's challenges. , 2009, Water research.

[189]  J. Maree,et al.  Theoretical performance of nanofiltration membranes for wastewater treatment , 2015, Environmental Chemistry Letters.

[190]  Fawzi Banat,et al.  Exploitation of solar energy collected by solar stills for desalination by membrane distillation , 2002 .

[191]  Yoshinobu Tanaka,et al.  Ion Exchange Membranes: Fundamentals and Applications , 2015 .

[192]  Huu Hao Ngo,et al.  Exploring high charge of phosphate as new draw solute in a forward osmosis-membrane distillation hybrid system for concentrating high-nutrient sludge. , 2016, The Science of the total environment.

[193]  Laura Chekli,et al.  Environmental and economic impacts of fertilizer drawn forward osmosis and nanofiltration hybrid system , 2017 .

[194]  Hisham Ettouney,et al.  Solar desalination for the 21st century : a review of modern technologies and researches on desalination coupled to renewable energies , 2007 .

[195]  Tai‐Shung Chung,et al.  Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future , 2013 .

[196]  Nidal Hilal,et al.  Mechanical properties of water desalination and wastewater treatment membranes , 2017 .

[197]  R. Semiat,et al.  Energy and environmental issues in desalination , 2015 .

[198]  G. Han,et al.  Effective As(III) Removal by A Multi-Charged Hydroacid Complex Draw Solute Facilitated Forward Osmosis-Membrane Distillation (FO-MD) Processes. , 2016, Environmental Science and Technology.

[199]  N. Hilal,et al.  Membrane Modification : Technology and Applications , 2012 .

[200]  Darren L. Oatley-Radcliffe,et al.  Technology for freeze concentration in the desalination industry , 2015 .

[201]  Nikolay Voutchkov,et al.  Energy use for membrane seawater desalination – current status and trends , 2017 .

[202]  Mushtaque Ahmed,et al.  Freezing-melting process and desalination: Review of present status and future prospects , 2007 .

[203]  Do Yeon Kim,et al.  Theoretical analysis of a seawater desalination process integrating forward osmosis, crystallization, and reverse osmosis , 2013 .

[204]  Anne M. Benneker,et al.  Effect of temperature gradients in (reverse) electrodialysis in the Ohmic regime , 2018 .

[205]  Andrea Cipollina,et al.  A hierarchical model for novel schemes of electrodialysis desalination , 2019, Desalination.

[206]  Noreddine Ghaffour,et al.  Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability , 2013 .

[207]  Sherub Phuntsho,et al.  Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination. , 2012, Environmental science & technology.

[208]  Sherub Phuntsho,et al.  Pilot-scale nanofiltration system as post-treatment for fertilizer-drawn forward osmosis desalination for direct fertigation , 2013 .

[209]  Hassan E.S. Fath,et al.  A comprehensive techno-economical review of indirect solar desalination , 2011 .

[210]  M. Chandrashekara,et al.  Water desalination system using solar heat: A review , 2017 .

[211]  Veera Gnaneswar Gude,et al.  Desalination and sustainability - An appraisal and current perspective. , 2016, Water research.

[212]  Jian Zuo,et al.  Freeze desalination of seawater using LNG cold energy. , 2016, Water research.

[213]  Ismat Kamal,et al.  Myth and reality of the hybrid desalination process , 2008 .

[214]  M. Amjad,et al.  Novel draw solution for forward osmosis based solar desalination , 2018, Applied Energy.

[215]  S. Navea,et al.  Long-term evaluation of a forward osmosis-nanofiltration demonstration plant for wastewater reuse in agriculture , 2018 .

[216]  H. Shon,et al.  Performance analysis of reverse osmosis, membrane distillation, and pressure-retarded osmosis hybrid processes , 2016 .

[217]  A. Karabelas,et al.  Analysis of temperature effects on the specific energy consumption in reverse osmosis desalination processes , 2020 .

[218]  I. Rubinstein,et al.  Modified Heterogeneous Anion-Exchange Membranes for Desalination of Brackish and Recycled Water , 2002 .

[219]  A. Ophir,et al.  Advanced MED process for most economical sea water desalination , 2005 .

[220]  Hani Sewilam,et al.  Investigating the performance of ammonium sulphate draw solution in fertilizer drawn forward osmosis process , 2016, Clean Technologies and Environmental Policy.

[221]  Ramato Ashu Tufa,et al.  Membrane Distillation and Reverse Electrodialysis for Near-Zero Liquid Discharge and low energy seawater desalination , 2015 .

[222]  M. Antar,et al.  Nanofiltration as a Pretreatment Step in Seawater Desalination: A Review , 2018 .

[223]  Lawrence L. Kazmerski,et al.  Energy Consumption and Water Production Cost of Conventional and Renewable-Energy-Powered Desalination Processes , 2013 .

[224]  Jeffrey A. Ruskowitz,et al.  RO-PRO desalination: An integrated low-energy approach to seawater desalination , 2014 .

[225]  A. A. Madani,et al.  Zero-discharge direct-contact freezing/solar evaporator desalination complex , 1992 .

[226]  Tai‐Shung Chung,et al.  Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies , 2019, Desalination.

[227]  Marianne Nyström,et al.  Drawbacks of applying nanofiltration and how to avoid them: A review , 2008 .

[228]  Jaeweon Cho,et al.  Application of nanofiltration pretreatment to remove divalent ions for economical seawater reverse osmosis desalination , 2015 .

[229]  Laura Chekli,et al.  Optimisation of a forward osmosis and membrane distillation hybrid system for the treatment of source-separated urine , 2019, Separation and Purification Technology.

[230]  Moonyong Lee,et al.  Energy Consumption in Forward Osmosis Desalination Compared to other Desalination Techniques , 2012 .

[231]  J. Pellegrino,et al.  A speculative hybrid reverse osmosis/electrodialysis unit operation , 2007 .

[232]  Domenico Panno,et al.  Potential applications using LNG cold energy in Sicily , 2008 .

[233]  Enrico Drioli,et al.  Membrane distillation: Recent developments and perspectives , 2015 .

[234]  Lourdes García-Rodríguez,et al.  Seawater desalination driven by renewable energies: a review , 2002 .

[235]  Yung-Tse Hung,et al.  Membrane and Desalination Technologies , 2011 .

[236]  Karim M. Chehayeb,et al.  On the merits of using multi-stage and counterflow electrodialysis for reduced energy consumption , 2018, Desalination.

[237]  Hung C. Duong,et al.  Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level , 2016 .

[238]  Thomas Wintgens,et al.  Water reclamation technologies for safe managed aquifer recharge. , 2012 .

[239]  Charles James Lemckert,et al.  Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends – A review , 2014 .

[240]  Jürgen Rheinländer,et al.  Photovoltaic Reverse Osmosis and Electrodialysis , 2009 .

[241]  Michele Tedesco,et al.  Experimental investigation of multistage electrodialysis for seawater desalination , 2019, Desalination.

[242]  June-Seok Choi,et al.  Integration of forward osmosis with membrane distillation: effect of operating conditions , 2013 .

[243]  N. Hilal,et al.  Development of antifouling properties and performance of nanofiltration membranes modified by interfacial polymerisation , 2011 .

[244]  P. Aimar,et al.  Specific energy requirement of direct contact membrane distillation , 2017 .

[245]  N. Hilal,et al.  An integrated fertilizer driven forward osmosis- renewables powered membrane distillation system for brackish water desalination: A combined experimental and theoretical approach , 2019, Desalination.

[246]  John H. Lienhard,et al.  Effects of membrane properties on water production cost in small scale membrane distillation systems , 2012 .

[247]  Peng Wang,et al.  Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment. , 2012, Environmental science & technology.

[248]  Joon Ha Kim,et al.  Reverse osmosis (RO) and pressure retarded osmosis (PRO) hybrid processes: Model-based scenario study , 2013 .

[249]  Richard L. Stover Retrofits to improve desalination plants , 2010 .

[250]  Hassan A. Arafat,et al.  Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation , 2013 .

[251]  F. Tadeo,et al.  Potential and analysis of an osmotic power plant in the Magdalena River using experimental field-data , 2019, Energy.

[252]  Qun Wang,et al.  Hybrid RED/ED system: Simultaneous osmotic energy recovery and desalination of high-salinity wastewater , 2017 .

[253]  Noreddine Ghaffour,et al.  Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems , 2015 .

[254]  E. Delyannis,et al.  Desalination by using alternative energy: Review and state-of-the-art , 2007 .

[255]  Chun Feng Wan,et al.  Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes , 2016 .

[256]  Enrico Drioli,et al.  Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study , 2007 .

[257]  Ammar Abdulaziz Alsairafi,et al.  Technical comparison between TVC/MEB and MSF , 2004 .

[258]  J. P. MacHarg,et al.  Modular pumps bring efficiencies , 2013 .

[259]  John H. Lienhard,et al.  Energy requirements for water production, treatment, end use, reclamation, and disposal , 2012 .

[260]  Takeshi Matsuura,et al.  Membrane‐Based Hybrid Processes: A Review , 2006 .

[261]  L. Lange,et al.  Critical performance assessment of a submerged hybrid forward osmosis - membrane distillation system , 2019, Desalination.

[262]  S Senthil,et al.  Reverse Osmosis–Pressure Retarded Osmosis hybrid system: Modelling, simulation and optimization , 2016 .

[263]  M. Abdel-Jawad,et al.  Pilot study of hybrid systems , 1998 .

[264]  Chuyang Y. Tang,et al.  A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management , 2013 .

[265]  Saravanamuthu Vigneswaran,et al.  Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential , 2017 .

[266]  Peng Wang,et al.  Na⁺-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination. , 2014, Chemical communications.