Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses

[1]  M. Nalls,et al.  Unhealthy Behaviours and Parkinson’s Disease: A Mendelian Randomisation Study , 2020 .

[2]  David M. Evans,et al.  Integrating Family-Based and Mendelian Randomization Designs. , 2020, Cold Spring Harbor perspectives in medicine.

[3]  David M. Evans,et al.  Within family Mendelian randomization studies. , 2019, Human molecular genetics.

[4]  S. Lewis,et al.  Genetic evidence for assortative mating on alcohol consumption in the UK Biobank , 2019, Nature Communications.

[5]  N. Timpson,et al.  Is population structure in the genetic biobank era irrelevant, a challenge, or an opportunity? , 2019, Human Genetics.

[6]  David M. Evans,et al.  Elucidating the role of maternal environmental exposures on offspring health and disease using two-sample Mendelian randomization , 2019, International journal of epidemiology.

[7]  G. Hemani,et al.  UK Biobank Genetic Data: MRC-IEU Quality Control, version 2 , 2019 .

[8]  D. Lawson,et al.  Apparent latent structure within the UK Biobank sample has implications for epidemiological analysis , 2019, Nature Communications.

[9]  David M. Evans,et al.  Calculating Power to Detect Maternal and Offspring Genetic Effects in Genetic Association Studies , 2019, Behavior Genetics.

[10]  Helmut Farbmacher,et al.  On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments , 2018, Journal of the American Statistical Association.

[11]  T. Lehtimäki,et al.  The effect of weight on labor market outcomes: An application of genetic instrumental variables , 2016, Health economics.

[12]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[13]  Jonathan P. Beauchamp,et al.  Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals , 2018, Nature Genetics.

[14]  G. Davey Smith,et al.  Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians , 2018, British Medical Journal.

[15]  F. Hartwig,et al.  Bias in Mendelian randomization due to assortative mating , 2018, Genetic epidemiology.

[16]  D. Lawlor,et al.  Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption , 2018, bioRxiv.

[17]  G. Coop,et al.  Reduced signal for polygenic adaptation of height in UK Biobank , 2018, bioRxiv.

[18]  M. Neale,et al.  Extending Causality Tests with Genetic Instruments: An Integration of Mendelian Randomization with the Classical Twin Design , 2018, Behavior genetics.

[19]  P. O’Reilly,et al.  Using genetic data to strengthen causal inference in observational research , 2018, Nature Reviews Genetics.

[20]  Valeriia Haberland,et al.  The MR-Base platform supports systematic causal inference across the human phenome , 2018, eLife.

[21]  Bjarni V. Halldórsson,et al.  The nature of nurture: Effects of parental genotypes , 2017, Science.

[22]  P. Koellinger,et al.  Genetic instrumental variable regression: Explaining socioeconomic and health outcomes in nonexperimental data , 2017, Proceedings of the National Academy of Sciences.

[23]  Kevin R. McKee,et al.  Cross-Lagged Analysis of Interplay Between Differential Traits in Sibling Pairs: Validation and Application to Parenting Behavior and ADHD Symptomatology , 2018, Behavior genetics.

[24]  G. Hemani,et al.  UK Biobank Genetic Data: MRC-IEU Quality Control, Version 1 [Updated version at DOI: 10.5523/bris.1ovaau5sxunp2cv8rcy88688v] , 2017 .

[25]  Fernando Pires Hartwig,et al.  Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption , 2017, bioRxiv.

[26]  David M. Evans,et al.  Using structural equation modelling to jointly estimate maternal and fetal effects on birthweight in the UK Biobank , 2018, International journal of epidemiology.

[27]  C. Sudlow,et al.  Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population , 2017, American journal of epidemiology.

[28]  Tanya M. Teslovich,et al.  Genetic evidence of assortative mating in humans , 2017, Nature Human Behaviour.

[29]  Robert W. Williams,et al.  Genetic Variation in the Social Environment Contributes to Health and Disease , 2017, PLoS genetics.

[30]  Jakob Grove,et al.  Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders , 2016, Nature Genetics.

[31]  F. Hartwig,et al.  Why internal weights should be avoided (not only) in MR-Egger regression. , 2016, International journal of epidemiology.

[32]  G. Davey Smith,et al.  Response to Hartwig and Davies , 2016, International Journal of Epidemiology.

[33]  N. Sheehan,et al.  Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic , 2016, International journal of epidemiology.

[34]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[35]  Shane A. McCarthy,et al.  Reference-based phasing using the Haplotype Reference Consortium panel , 2016, Nature Genetics.

[36]  G. Davey Smith,et al.  Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator , 2016, Genetic epidemiology.

[37]  P. Lichtenstein,et al.  Patterns of Nonrandom Mating Within and Across 11 Major Psychiatric Disorders. , 2016, JAMA psychiatry.

[38]  Jonathan P. Beauchamp,et al.  Genome-wide association study identifies 74 loci associated with educational attainment , 2016, Nature.

[39]  Samuel E. Jones,et al.  Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank , 2016, British Medical Journal.

[40]  G. Davey Smith,et al.  Can genetic evidence help us understand why height and weight relate to social position? , 2016, British Medical Journal.

[41]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[42]  Tom R. Gaunt,et al.  Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel , 2015, Nature Communications.

[43]  Tom R. Gaunt,et al.  The UK10K project identifies rare variants in health and disease , 2016 .

[44]  G. Davey Smith,et al.  Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression , 2015, International journal of epidemiology.

[45]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[46]  F. Dudbridge,et al.  Re: "Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects". , 2015, American journal of epidemiology.

[47]  Ross M. Fraser,et al.  Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.

[48]  S. Thompson,et al.  Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects , 2015, American journal of epidemiology.

[49]  P. Lundborg,et al.  Body Size, Skills, and Income: Evidence From 150,000 Teenage Siblings , 2014, Demography.

[50]  Ross M. Fraser,et al.  Defining the role of common variation in the genomic and biological architecture of adult human height , 2014, Nature Genetics.

[51]  G. Davey Smith,et al.  Mendelian randomization: genetic anchors for causal inference in epidemiological studies , 2014, Human molecular genetics.

[52]  D. Boomsma,et al.  GE Covariance Through Phenotype to Environment Transmission: An Assessment in Longitudinal Twin Data and Application to Childhood Anxiety , 2014, Behavior genetics.

[53]  Tom S. Price,et al.  Causal effects of body mass index on cardiometabolic traits and events: a Mendelian randomization analysis. , 2014, American journal of human genetics.

[54]  Dylan S. Small,et al.  Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization , 2014, 1401.5755.

[55]  P. Visscher,et al.  Inference of the genetic architecture underlying BMI and height with the use of 20,240 sibling pairs. , 2013, American journal of human genetics.

[56]  K. Hveem,et al.  COHORT PROFILE Cohort Profile : The HUNT Study , Norway , 2013 .

[57]  B. Pierce,et al.  Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators , 2013, American journal of epidemiology.

[58]  M. Schaffer XTIVREG2: Stata module to perform extended IV/2SLS, GMM and AC/HAC, LIML and k-class regression for panel data models , 2012 .

[59]  G. McVean,et al.  Differential confounding of rare and common variants in spatially structured populations , 2011, Nature Genetics.

[60]  J. Ott,et al.  Family-based designs for genome-wide association studies , 2011, Nature Reviews Genetics.

[61]  G. Smith Epidemiology, epigenetics and the 'Gloomy Prospect': embracing randomness in population health research and practice. , 2011, International journal of epidemiology.

[62]  Jonathan P. Beauchamp,et al.  On the sources of the height–intelligence correlation: New insights from a bivariate ACE model with assortative mating , 2010, Behavior genetics.

[63]  B. Neale Statistical genetics : gene mapping through linkage and association , 2007 .

[64]  B. Browning,et al.  Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. , 2007, American journal of human genetics.

[65]  F. Rasmussen,et al.  Height at age 18 years is a strong predictor of attained education later in life: cohort study of over 950,000 Swedish men. , 2006, International journal of epidemiology.

[66]  Annie E. Wertz,et al.  Night and day: are siblings as different in temperament as parents say they are? , 2004, Journal of personality and social psychology.

[67]  R. Krueger,et al.  Heritability of body height and educational attainment in an international context: Comparison of adult twins in Minnesota and Finland , 2004, American journal of human biology : the official journal of the Human Biology Council.

[68]  M. B. Katan,et al.  Apolipoprotein E isoforms, serum cholesterol, and cancer , 2004 .

[69]  J. Kaprio,et al.  Assortative mating by body height and BMI: Finnish Twins and their spouses , 2003, American Journal of Human Biology.

[70]  S. Ebrahim,et al.  'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? , 2003, International journal of epidemiology.

[71]  Douglas G Altman,et al.  Interaction revisited: the difference between two estimates , 2003, BMJ : British Medical Journal.

[72]  J. Kaprio,et al.  Genetic and Environmental Contributions to the Association Between Body Height and Educational Attainment: A Study of Adult Finnish Twins , 2000, Behavior genetics.

[73]  G. Abecasis,et al.  A general test of association for quantitative traits in nuclear families. , 2000, American journal of human genetics.

[74]  P. Sham,et al.  Distinguishing Population Stratification from Genuine Allelic Effects with Mx: Association of ADH2 with Alcohol Consumption , 1999 .

[75]  J K Hewitt,et al.  Combined linkage and association sib-pair analysis for quantitative traits. , 1999, American journal of human genetics.

[76]  A. Pickles,et al.  Genetic influences on childhood hyperactivity: contrast effects imply parental rating bias, not sibling interaction , 1998, Psychological Medicine.

[77]  W. Ewens,et al.  A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. , 1998, American journal of human genetics.

[78]  W J Ewens,et al.  The TDT and other family-based tests for linkage disequilibrium and association. , 1996, American journal of human genetics.

[79]  Joshua D. Angrist,et al.  Split-Sample Instrumental Variables Estimates of the Return to Schooling , 1995 .

[80]  R. Kessler,et al.  Testing hypotheses about direction of causation using cross-sectional family data , 1993, Behavior genetics.

[81]  K. Midthjell,et al.  Is questionnaire information valid in the study of a chronic disease such as diabetes? The Nord-Trøndelag diabetes study. , 1992, Journal of epidemiology and community health.

[82]  G. Carey Sibling imitation and contrast effects , 1986, Behavior genetics.

[83]  M. Katan APOUPOPROTEIN E ISOFORMS, SERUM CHOLESTEROL, AND CANCER , 1986, The Lancet.

[84]  R. Fisher XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. , 1919, Transactions of the Royal Society of Edinburgh.

[85]  L. Penrose,et al.  THE CORRELATION BETWEEN RELATIVES ON THE SUPPOSITION OF MENDELIAN INHERITANCE , 2022 .