Large-amplitude electrostatic solitary structures in a charge varying dusty plasma with vortex-like ion distribution

Abstract A numerical investigation is presented to show the existence, formation and possible realization of large-amplitude solitary potentials in a charge varying dusty plasma with trapped ion particles. These nonlinear localized structures are self-consistent solutions of the Vlasov equation representing saturated states of a three-stream unstable collisionless dusty plasma. The saturation is provided by an interplay between ion trapping and dust charging. It is found that under certain conditions the effect of dust charge variation can be quite important. In particular, it may be noted that the dust charge variation leads to an additional enlargement of the nonlinear localized structure. Furthermore, our results show that the dust charge variation provides an alternate physical mechanism causing dissipation and as a consequence causes the wave amplitude to decay and transfer to the so-called noise tail.

[1]  Eric C. Benck,et al.  Plasma Diagnostic Techniques , 2006 .

[2]  S. El-Labany,et al.  Critical density solitary waves structures in a hot magnetized dusty plasma with vortexlike ion distribution in phase space , 2005 .

[3]  Abdullah Al Mamun,et al.  Dust-acoustic solitary and shock waves in a strongly coupled liquid state dusty plasma with a vortex-like ion distribution , 2004 .

[4]  T. H. Zerguini,et al.  Small amplitude Bernstein–Greene–Kruskal solitary waves in a thermal charge-varying dusty plasma , 2004 .

[5]  Abdullah Al Mamun,et al.  Dust acoustic solitary waves and double layers in a dusty plasma with two-temperature trapped ions , 2004 .

[6]  T. H. Zerguini,et al.  Nonlinear dust Bernstein-Greene-Kruskal modes in charge-varying dusty plasmas , 2002 .

[7]  T. H. Zerguini,et al.  Nonlinear electrostatic oscillations in a dusty plasma , 2002 .

[8]  Samiran Ghosh,et al.  Effect of nonadiabatic dust charge variations on nonlinear dust acoustic waves with nonisothermal ions , 2002 .

[9]  T. H. Zerguini,et al.  Nonlinear oscillations in dusty plasmas with variable charges on dust particles , 2002 .

[10]  D. Tskhakaya,et al.  Effect of trapped ions on shielding of a charged dust grain in a plasma , 2001 .

[11]  P. Shukla A survey of dusty plasma physics , 2001 .

[12]  G. Ganguli,et al.  Effect of trapped ions on shielding of a charged spherical object in a plasma. , 2001, Physical review letters.

[13]  T. H. Zerguini,et al.  Current-driven dust ion-acoustic instability in a collisional dusty plasma with charge fluctuations , 2001 .

[14]  H. Schamel Hole equilibria in Vlasov–Poisson systems: A challenge to wave theories of ideal plasmas , 2000 .

[15]  G. Ganguli,et al.  Interactions between dust grains in a dusty plasma , 2000 .

[16]  T. H. Zerguini,et al.  Effects of electron depletion on nonlinear dusty plasma oscillations , 2000 .

[17]  D. Winske Waves in Dusty Space Plasmas , 2000 .

[18]  P. Shukla Dust ion-acoustic shocks and holes , 2000 .

[19]  M. Kakati,et al.  Solitary wave structures in presence of nonisothermal ions in a dusty plasma , 1998 .

[20]  Abdullah Al Mamun,et al.  Obliquely propagating electrostatic solitary structures in a magnetized hot dusty plasma with trapped ions , 1998 .

[21]  R. Merlino,et al.  Laboratory studies of waves and instabilities in dusty plasmas , 1998 .

[22]  Abdullah Al Mamun Nonlinear propagation of dust-acoustic waves in a magnetized dusty plasma with vortex-like ion distribution , 1998, Journal of Plasma Physics.

[23]  A. Mamun Solitary Waves in a Three-component Dusty Plasma with Trapped Ions , 1998 .

[24]  J. Ma,et al.  Effects of various forces on the distribution of particles at the boundary of a dusty plasma , 1997 .

[25]  Y. Shchekinov Dust-acoustic soliton with nonisothermal ions☆ , 1997 .

[26]  M. Yu,et al.  Shock waves in plasmas containing variable‐charge impurities , 1996 .

[27]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[28]  H. Schamel,et al.  Electron holes and their role in the dynamics of current-carrying weakly collisional plasmas. Part 1. Immobile ions , 1996, Journal of Plasma Physics.

[29]  Mihaly Horanyi,et al.  CHARGED DUST DYNAMICS IN THE SOLAR SYSTEM , 1996 .

[30]  Abdullah Al Mamun,et al.  Effects of vortex‐like and non‐thermal ion distributions on non‐linear dust‐acoustic waves , 1996 .

[31]  H. Schamel,et al.  Plasma transport in the presence of selfgenerated phasespace structures , 1996 .

[32]  H. Schamel,et al.  Adiabatic growth of generalized e-holes in drifting plasmas , 1995 .

[33]  M. Yu,et al.  Electrostatic sheath at the boundary of a dusty plasma , 1995 .

[34]  D. A. Mendis,et al.  COSMIC DUSTY PLASMA , 1994 .

[35]  P. Shukla,et al.  Dust ion-acoustic wave , 1992 .

[36]  Keller,et al.  Transport of dust particles in glow-discharge plasmas. , 1992, Physical review letters.

[37]  N. N. Rao,et al.  DUST -ACOUSTIC WAVES IN DUSTY PLASMAS , 1990 .

[38]  C. Goertz,et al.  Dusty plasmas in the solar system , 1989 .

[39]  H. Schamel,et al.  Electron holes, ion holes and double layers: Electrostatic phase space structures in theory and experiment , 1986 .

[40]  H. Schamel,et al.  Analytical double layers , 1983 .

[41]  J. Rasmussen Effects of Trapped Particles on Strongly Nonlinear Electron Plasma Waves , 1982 .

[42]  H. Schamel Kinetic Theory of Phase Space Vortices and Double Layers , 1982 .

[43]  E. Whipple Potentials of surfaces in space , 1981 .

[44]  H. Schamel,et al.  Solitary plasma hole via ion‐vortex distribution , 1980 .

[45]  H. Schamel Role of Trapped Particles and Waves in Plasma Solitons-Theory and Application , 1979 .

[46]  H. Schamel Theory of Electron Holes , 1979 .

[47]  M. Tran Ion Acoustic Solitons in a Plasma: A Review of their Experimental Properties and Related Theories , 1979 .