Analysis of Coupled Stability in Multilateral Dual-User Teleoperation Systems

In this paper, we set out a framework for the analysis of coupled stability in dual-user linear teleoperation systems. An extension of the Zeheb-Walach (ZW) criteria for absolute stability of an n-port network will be stated and proven. While the original theorem states conditions for asymptotic stability of a network terminated by passive impedances, the extended version allows for poles on the imaginary axis, which makes it applicable to a larger class of systems, such as robotic applications with position feedback. The extended theorem includes conditions on the Laurent expansion of the elements and the principal minors of the network immittance matrix. A novel dual-user shared control paradigm, realizing a three-way gearbox mechanism, is presented. A numerical analysis of absolute stability of the three-port network, representing the shared control architecture, demonstrates the effectiveness of the extended Zeheb-Walach method.

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  Keyvan Hashtrudi-Zaad,et al.  A Framework for Unconditional Stability Analysis of Multimaster/Multislave Teleoperation Systems , 2013, IEEE Transactions on Robotics.

[3]  Shahin Sirouspour,et al.  A Kinematic Control Framework for Single-Slave Asymmetric Teleoperation Systems , 2011, IEEE Transactions on Robotics.

[4]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[5]  Ariel Bleicher The Gulf spill's lessons for robotics , 2010 .

[6]  Keyvan Hashtrudi-Zaad,et al.  Performance Issues in Collaborative Haptic Training , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[7]  Ranjan Mukherjee,et al.  A shared-control approach to haptic interface design for minimally invasive telesurgical training , 2005, IEEE Transactions on Control Systems Technology.

[8]  Martin Buss,et al.  Development of a Multi-modal Multi-user Telepresence and Teleaction System , 2010, Int. J. Robotics Res..

[9]  Jong Hyeon Park,et al.  Impedance Control with Variable Damping for Bilateral Teleoperation under Time Delay , 2005 .

[10]  Keyvan Hashtrudi-Zaad,et al.  Least conservative robust stability condition for linear bilateral teleoperation control systems , 2009, World Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[11]  Septimiu E. Salcudean,et al.  Analysis of Control Architectures for Teleoperation Systems with Impedance/Admittance Master and Slave Manipulators , 2001, Int. J. Robotics Res..

[12]  Kiyoshi Ohishi,et al.  A Realization of Multilateral Force Feedback Control for Cooperative Motion , 2007, 2006 IEEE International Conference on Industrial Technology.

[13]  Marcia Kilchenman O'Malley,et al.  The Task-Dependent Efficacy of Shared-Control Haptic Guidance Paradigms , 2012, IEEE Transactions on Haptics.

[14]  Perry Y. Li,et al.  Passive bilateral feedforward control of linear dynamically similar teleoperated manipulators , 2003, IEEE Trans. Robotics Autom..

[15]  Shahin Sirouspour,et al.  Trilateral teleoperation control of kinematically redundant robotic manipulators , 2011, Int. J. Robotics Res..

[16]  Simon S. Haykin,et al.  Active Network Theory. , 1970 .

[17]  Blake Hannaford,et al.  Control law design for haptic interfaces to virtual reality , 2002, IEEE Trans. Control. Syst. Technol..

[18]  Keyvan Hashtrudi-Zaad,et al.  Bounded-Impedance Absolute Stability of Bilateral Teleoperation Control Systems , 2010, IEEE Transactions on Haptics.

[19]  Ezra Zeheb,et al.  Zero sets of multiparameter functions and stability of multidimensional systems , 1981 .

[20]  Saeed Shiry Ghidary,et al.  Nonlinear H∞ Control of a Bilateral Nonlinear Teleoperation System , 2008 .

[21]  P. Wiseman The Virtual Teacher , 1998 .

[22]  Wen-Hong Zhu,et al.  Stability guaranteed teleoperation: an adaptive motion/force control approach , 2000, IEEE Trans. Autom. Control..

[23]  Ezra Zeheb,et al.  Necessary and sufficient conditions for absolute stability of linear n‐ports , 1981 .

[24]  B. Anderson,et al.  On the Existence of H Matrices , 1966 .

[25]  J. Jansen,et al.  Controller Design for a Force-Reflecting Teleoperator System With Kinematically Dissimilar Master and Slave , 1992 .

[26]  Dominiek Reynaerts,et al.  A mechatronic analysis of the classical position-force controller based on bounded environment passivity , 2011, Int. J. Robotics Res..

[27]  Neville Hogan,et al.  Controlling impedance at the man/machine interface , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[28]  R. W. Daniel,et al.  Fundamental Limits of Performance for Force Reflecting Teleoperation , 1998, Int. J. Robotics Res..

[29]  Keyvan Hashtrudi-Zaad,et al.  Dual-User Teleoperation Systems: New Multilateral Shared Control Architecture and Kinesthetic Performance Measures , 2012, IEEE/ASME Transactions on Mechatronics.

[30]  S. Hara,et al.  Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations , 1998, IEEE Trans. Autom. Control..

[31]  David Kortenkamp,et al.  A Survey of Space Robotics , 2003 .

[32]  Allison M. Okamura,et al.  Telemanipulators with Sensor/Actuator Asymmetries Fail the Robustness Criterion , 2008, 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[33]  M. Sile O'Modhrain,et al.  The Virtual Teacher , 1999 .

[34]  Hermano I Krebs,et al.  Telerehabilitation robotics: bright lights, big future? , 2006, Journal of rehabilitation research and development.

[35]  Mahdi Tavakoli,et al.  A passivity criterion for N-port multilateral haptic systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[36]  Carsten W. Scherer,et al.  Stability Analysis for Bilateral Teleoperation: An IQC Formulation , 2012, IEEE Transactions on Robotics.

[37]  Dongjun Lee,et al.  Passive Bilateral Teleoperation With Constant Time Delay , 2006, IEEE Transactions on Robotics.