VisHiC—hierarchical functional enrichment analysis of microarray data

Measuring gene expression levels with microarrays is one of the key technologies of modern genomics. Clustering of microarray data is an important application, as genes with similar expression profiles may be regulated by common pathways and involved in related functions. Gene Ontology (GO) analysis and visualization allows researchers to study the biological context of discovered clusters and characterize genes with previously unknown functions. We present VisHiC (Visualization of Hierarchical Clustering), a web server for clustering and compact visualization of gene expression data combined with automated function enrichment analysis. The main output of the analysis is a dendrogram and visual heatmap of the expression matrix that highlights biologically relevant clusters based on enriched GO terms, pathways and regulatory motifs. Clusters with most significant enrichments are contracted in the final visualization, while less relevant parts are hidden altogether. Such a dense representation of microarray data gives a quick global overview of thousands of transcripts in many conditions and provides a good starting point for further analysis. VisHiC is freely available at http://biit.cs.ut.ee/vishic.

[1]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[2]  Aedín C. Culhane,et al.  Expression Profiler: next generation - an online platform for analysis of microarray data , 2004, Nucleic Acids Res..

[3]  Ibrahim Emam,et al.  ArrayExpress update—from an archive of functional genomics experiments to the atlas of gene expression , 2008, Nucleic Acids Res..

[4]  L. Parfrey,et al.  Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae , 2006, Nucleic acids research.

[5]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[6]  Frédéric Chalmel,et al.  The Annotation, Mapping, Expression and Network (AMEN) suite of tools for molecular systems biology , 2008, BMC Bioinformatics.

[7]  D. Allison,et al.  Microarray data analysis: from disarray to consolidation and consensus , 2006, Nature Reviews Genetics.

[8]  Alan P. Sprague,et al.  Reproducible Clusters from Microarray Research: Whither? , 2005, BMC Bioinformatics.

[9]  P. Khatri,et al.  Global functional profiling of gene expression ? ? This work was funded in part by a Sun Microsystem , 2003 .

[10]  Tomomasa Nagashima,et al.  Knowledge-assisted recognition of cluster boundaries in gene expression data , 2005, Artif. Intell. Medicine.

[11]  Alexander E. Kel,et al.  TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes , 2005, Nucleic Acids Res..

[12]  Christian A. Rees,et al.  Systematic variation in gene expression patterns in human cancer cell lines , 2000, Nature Genetics.

[13]  Patrick J. Killion,et al.  Genetic reconstruction of a functional transcriptional regulatory network , 2007, Nature Genetics.

[14]  Olga G. Troyanskaya,et al.  Putting microarrays in a context: Integrated analysis of diverse biological data , 2005, Briefings Bioinform..

[15]  P. Khatri,et al.  Global functional profiling of gene expression. , 2003, Genomics.

[16]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[18]  Meelis Kull,et al.  Fast approximate hierarchical clustering using similarity heuristics , 2008, BioData Mining.

[19]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[20]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[21]  Simon Kasif,et al.  Hierarchical tree snipping: clustering guided by prior knowledge , 2007, Bioinform..

[22]  Hedi Peterson,et al.  g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments , 2007, Nucleic Acids Res..

[23]  Janusz M Bujnicki,et al.  A primordial RNA modification enzyme: the case of tRNA (m1A) methyltransferase. , 2004, Nucleic acids research.

[24]  Xinqiang Han,et al.  Genomic profiling of the human heart before and after mechanical support with a ventricular assist device reveals alterations in vascular signaling networks. , 2004, Physiological genomics.

[25]  S. Wang,et al.  Maintaining serum response factor activity in the older heart equal to that of the young adult is associated with better cardiac response to isoproterenol stress , 2007, Basic Research in Cardiology.

[26]  Eric P. Hoffman,et al.  An interactive power analysis tool for microarray hypothesis testing and generation , 2006, Bioinform..

[27]  Sampsa Hautaniemi,et al.  Fast Gene Ontology based clustering for microarray experiments , 2008, BioData Mining.

[28]  Dennis B. Troup,et al.  NCBI GEO: mining tens of millions of expression profiles—database and tools update , 2006, Nucleic Acids Res..

[29]  M. Vannan,et al.  A Mouse Model of Mitochondrial Disease Reveals Germline Selection Against Severe mtDNA Mutations , 2008, Science.

[30]  Aurora Torrente,et al.  A new algorithm for comparing and visualizing relationships between hierarchical and flat gene expression data clusterings , 2005, Bioinform..

[31]  Boris Adryan,et al.  Gene-Ontology-based clustering of gene expression data , 2004, Bioinform..

[32]  D. Koller,et al.  GeneXPress : A Visualization and Statistical Analysis Tool for Gene Expression and Sequence Data , .

[33]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[34]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[35]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[36]  X. Chen,et al.  The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells , 2006, Nature Genetics.

[37]  H. Aburatani,et al.  Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues. , 2005, Genomics.

[38]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..