Deep moiré potentials in twisted transition metal dichalcogenide bilayers

[1]  E. Kaxiras,et al.  Moiré metrology of energy landscapes in van der Waals heterostructures , 2020, Nature communications.

[2]  Mit H. Naik,et al.  Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices , 2020, Nature Materials.

[3]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[4]  W. Geng,et al.  Moiré Potential, Lattice Corrugation, and Band Gap Spatial Variation in a Twist-Free MoTe2/MoS2 Heterobilayer. , 2020, The journal of physical chemistry letters.

[5]  J. Hone,et al.  Excitonic Phase Transitions in MoSe2/WSe2 Heterobilayers , 2020, 2001.03812.

[6]  H. R. Krishnamurthy,et al.  Reconstruction of moiré lattices in twisted transition metal dichalcogenide bilayers , 2019, Physical Review B.

[7]  Xiaodong Xu,et al.  One-Dimensional Moir\'e Excitons in Transition-Metal Dichalcogenide Heterobilayers , 2019, 1912.06628.

[8]  Thomas H. Bointon,et al.  Atomic reconstruction in twisted bilayers of transition metal dichalcogenides , 2019, Nature Nanotechnology.

[9]  V. Fal’ko,et al.  Stacking Domains and Dislocation Networks in Marginally Twisted Bilayers of Transition Metal Dichalcogenides. , 2019, Physical review letters.

[10]  B. Jonker,et al.  Twist Angle Dependent Atomic Reconstruction and Moiré Patterns in Transition Metal Dichalcogenide Heterostructures. , 2019, ACS nano.

[11]  A. Pasupathy,et al.  Tunable strain soliton networks confine electrons in van der Waals materials , 2019, 1910.14231.

[12]  N. Yuan,et al.  Moiré quantum chemistry: Charge transfer in transition metal dichalcogenide superlattices , 2019, Physical Review B.

[13]  Kenji Watanabe,et al.  Flat bands in twisted bilayer transition metal dichalcogenides , 2019, Nature Physics.

[14]  Kenji Watanabe,et al.  Magic continuum in twisted bilayer WSe2 , 2019, 1910.12147.

[15]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[16]  J. Shan,et al.  Evidence of high-temperature exciton condensation in two-dimensional atomic double layers , 2019, Nature.

[17]  V. Fal’ko,et al.  Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides , 2018, Physical Review B.

[18]  Xiaodong Xu,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[19]  S. Banerjee,et al.  Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.

[20]  Steven B. Torrisi,et al.  Relaxation and domain formation in incommensurate two-dimensional heterostructures , 2018, Physical Review B.

[21]  L. Balicas,et al.  Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. , 2018, Nano letters.

[22]  E. Tutuc,et al.  Hubbard Model Physics in Transition Metal Dichalcogenide Moiré Bands. , 2018, Physical review letters.

[23]  Mit H. Naik,et al.  Ultraflatbands and Shear Solitons in Moiré Patterns of Twisted Bilayer Transition Metal Dichalcogenides. , 2018, Physical review letters.

[24]  Kyeongjae Cho,et al.  Quantum-Confined Electronic States Arising from the Moiré Pattern of MoS2-WSe2 Heterobilayers. , 2017, Nano letters.

[25]  Fengcheng Wu,et al.  Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers , 2017, 1710.10278.

[26]  Xiaodong Xu,et al.  Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices , 2017, Science Advances.

[27]  Xiaodong Xu,et al.  Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures , 2017, Science Advances.

[28]  M. Chou,et al.  Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.

[29]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[30]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[31]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.