Deep moiré potentials in twisted transition metal dichalcogenide bilayers
暂无分享,去创建一个
A. Pasupathy | J. Hone | Xiaoyang Zhu | W. Yao | D. Halbertal | Mingxing Chen | D. Basov | Song Liu | Wenjing Wu | Sara Shabani | S. Shabani
[1] E. Kaxiras,et al. Moiré metrology of energy landscapes in van der Waals heterostructures , 2020, Nature communications.
[2] Mit H. Naik,et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices , 2020, Nature Materials.
[3] Kenji Watanabe,et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.
[4] W. Geng,et al. Moiré Potential, Lattice Corrugation, and Band Gap Spatial Variation in a Twist-Free MoTe2/MoS2 Heterobilayer. , 2020, The journal of physical chemistry letters.
[5] J. Hone,et al. Excitonic Phase Transitions in MoSe2/WSe2 Heterobilayers , 2020, 2001.03812.
[6] H. R. Krishnamurthy,et al. Reconstruction of moiré lattices in twisted transition metal dichalcogenide bilayers , 2019, Physical Review B.
[7] Xiaodong Xu,et al. One-Dimensional Moir\'e Excitons in Transition-Metal Dichalcogenide Heterobilayers , 2019, 1912.06628.
[8] Thomas H. Bointon,et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides , 2019, Nature Nanotechnology.
[9] V. Fal’ko,et al. Stacking Domains and Dislocation Networks in Marginally Twisted Bilayers of Transition Metal Dichalcogenides. , 2019, Physical review letters.
[10] B. Jonker,et al. Twist Angle Dependent Atomic Reconstruction and Moiré Patterns in Transition Metal Dichalcogenide Heterostructures. , 2019, ACS nano.
[11] A. Pasupathy,et al. Tunable strain soliton networks confine electrons in van der Waals materials , 2019, 1910.14231.
[12] N. Yuan,et al. Moiré quantum chemistry: Charge transfer in transition metal dichalcogenide superlattices , 2019, Physical Review B.
[13] Kenji Watanabe,et al. Flat bands in twisted bilayer transition metal dichalcogenides , 2019, Nature Physics.
[14] Kenji Watanabe,et al. Magic continuum in twisted bilayer WSe2 , 2019, 1910.12147.
[15] Kenji Watanabe,et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.
[16] J. Shan,et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers , 2019, Nature.
[17] V. Fal’ko,et al. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides , 2018, Physical Review B.
[18] Xiaodong Xu,et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.
[19] S. Banerjee,et al. Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.
[20] Steven B. Torrisi,et al. Relaxation and domain formation in incommensurate two-dimensional heterostructures , 2018, Physical Review B.
[21] L. Balicas,et al. Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. , 2018, Nano letters.
[22] E. Tutuc,et al. Hubbard Model Physics in Transition Metal Dichalcogenide Moiré Bands. , 2018, Physical review letters.
[23] Mit H. Naik,et al. Ultraflatbands and Shear Solitons in Moiré Patterns of Twisted Bilayer Transition Metal Dichalcogenides. , 2018, Physical review letters.
[24] Kyeongjae Cho,et al. Quantum-Confined Electronic States Arising from the Moiré Pattern of MoS2-WSe2 Heterobilayers. , 2017, Nano letters.
[25] Fengcheng Wu,et al. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers , 2017, 1710.10278.
[26] Xiaodong Xu,et al. Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices , 2017, Science Advances.
[27] Xiaodong Xu,et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures , 2017, Science Advances.
[28] M. Chou,et al. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.
[29] D. Bowler,et al. Van der Waals density functionals applied to solids , 2011, 1102.1358.
[30] S. Grimme,et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.
[31] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[32] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[33] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.