An Ecological Network of Polysaccharide Utilization among Human Intestinal Symbionts

[1]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[2]  Klaus Ley,et al.  Bacterial colonization factors control specificity and stability of the gut microbiota , 2013, Nature.

[3]  J. Gordon,et al.  Metabolic niche of a prominent sulfate-reducing human gut bacterium , 2013, Proceedings of the National Academy of Sciences.

[4]  J. Clemente,et al.  The Long-Term Stability of the Human Gut Microbiota , 2013 .

[5]  Otto X. Cordero,et al.  Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations , 2012, Proceedings of the National Academy of Sciences.

[6]  Otto X. Cordero,et al.  Ecological Populations of Bacteria Act as Socially Cohesive Units of Antibiotic Production and Resistance , 2012, Science.

[7]  J. Nicholson,et al.  Host-Gut Microbiota Metabolic Interactions , 2012, Science.

[8]  A. Macpherson,et al.  Interactions Between the Microbiota and the Immune System , 2012, Science.

[9]  Joel L. Sachs,et al.  The Origins of Cooperative Bacterial Communities , 2012, mBio.

[10]  E. Martens,et al.  How glycan metabolism shapes the human gut microbiota , 2012, Nature Reviews Microbiology.

[11]  R. Lenski,et al.  The Black Queen Hypothesis: Evolution of Dependencies through Adaptive Gene Loss , 2012, mBio.

[12]  Bernard Henrissat,et al.  Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts , 2011, PLoS biology.

[13]  Michael A Fischbach,et al.  Eating for two: how metabolism establishes interspecies interactions in the gut. , 2011, Cell host & microbe.

[14]  L. Comstock,et al.  UDP-Glucuronic Acid Decarboxylases of Bacteroides fragilis and Their Prevalence in Bacteria , 2011, Journal of bacteriology.

[15]  J. Gordon,et al.  Human nutrition, the gut microbiome and the immune system , 2011, Nature.

[16]  L. Comstock,et al.  Longitudinal Analysis of the Prevalence, Maintenance, and IgA Response to Species of the Order Bacteroidales in the Human Gut , 2011, Infection and Immunity.

[17]  M. Kuehn,et al.  Biological functions and biogenesis of secreted bacterial outer membrane vesicles. , 2010, Annual review of microbiology.

[18]  J. Sonnenburg,et al.  Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Induced Microbiota Alterations , 2010, Cell.

[19]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[20]  Rob Knight,et al.  Identifying genetic determinants needed to establish a human gut symbiont in its habitat. , 2009, Cell host & microbe.

[21]  Eric C. Martens,et al.  Complex Glycan Catabolism by the Human Gut Microbiota: The Bacteroidetes Sus-like Paradigm , 2009, The Journal of Biological Chemistry.

[22]  L. Comstock,et al.  A General O-Glycosylation System Important to the Physiology of a Major Human Intestinal Symbiont , 2009, Cell.

[23]  Alan W Walker,et al.  The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. , 2008, Environmental microbiology.

[24]  Les Dethlefsen,et al.  The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing , 2008, PLoS biology.

[25]  B. White,et al.  Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis , 2008, Nature Reviews Microbiology.

[26]  Hiroshi Mori,et al.  Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes , 2007, DNA research : an international journal for rapid publication of reports on genes and genomes.

[27]  A. Griffin,et al.  Social evolution theory for microorganisms , 2006, Nature Reviews Microbiology.

[28]  D. Shi,et al.  Structure and Catalytic Mechanism of a Novel N-Succinyl-l-ornithine Transcarbamylase in Arginine Biosynthesis of Bacteroides fragilis* , 2006, Journal of Biological Chemistry.

[29]  K R Foster,et al.  A general model for the evolution of mutualisms , 2006, Journal of evolutionary biology.

[30]  C. Spence,et al.  Characterization of the Primary Starch Utilization Operon in the Obligate Anaerobe Bacteroides fragilis: Regulation by Carbon Source and Oxygen , 2006, Journal of bacteriology.

[31]  R. Nemcová,et al.  Thin-layer chromatography analysis of fructooligosaccharides in biological samples. , 2006, Journal of chromatography. A.

[32]  M. Whiteley,et al.  Membrane vesicles traffic signals and facilitate group activities in a prokaryote , 2005, Nature.

[33]  E. Purdom,et al.  Diversity of the Human Intestinal Microbial Flora , 2005, Science.

[34]  A. Krogh,et al.  Prediction of lipoprotein signal peptides in Gram‐negative bacteria , 2003, Protein science : a publication of the Protein Society.

[35]  Yu-Teh Li,et al.  Diphenylamine-aniline-phosphoric acid reagent, a versatile spray reagent for revealing glycoconjugates on thin-layer chromatography plates. , 2000, Analytical biochemistry.

[36]  A. Salyers,et al.  Physiological Characterization of SusG, an Outer Membrane Protein Essential for Starch Utilization byBacteroides thetaiotaomicron , 1999, Journal of bacteriology.

[37]  A. Salyers,et al.  Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron , 1997, Journal of bacteriology.

[38]  S. Patrick,et al.  A comparison of the haemagglutinating and enzymic activities of Bacteroides fragilis whole cells and outer membrane vesicles. , 1996, Microbial pathogenesis.

[39]  M. McKee,et al.  Heterologous gene expression in Bacteroides fragilis. , 1992, Plasmid.

[40]  A. Stevens,et al.  The region of a Bacteroides conjugal chromosomal tetracycline resistance element which is responsible for production of plasmidlike forms from unlinked chromosomal DNA might also be involved in transfer of the element , 1990, Journal of bacteriology.

[41]  R. McCarthy,et al.  Role of starch as a substrate for Bacteroides vulgatus growing in the human colon , 1988, Applied and environmental microbiology.

[42]  A. Salyers,et al.  Utilization of Xylan by Two Species of Human Colonic Bacteroides , 1981, Applied and environmental microbiology.

[43]  S. E. West,et al.  Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon , 1977, Applied and environmental microbiology.