Models of adoption and best practices for mobile hands-on learning in electrical engineering

Pedagogical practices in electrical engineering education have been shifting away from teacher-centered learning during the past decade. An innovation that has enabled the adoption of inquiry-based and problem-based learning into the curriculum using experimentation coupled with simulation and analysis has been the development of portable oscilloscopes and other instruments that rely on tablet or laptop computers to perform some of the data processing and to act as the display. Faculty members at six institutions of higher learning have incorporated hands-on experimental activities into existing courses and/or developed new courses that take advantage of these new tools. Assessment data collected by these faculty members have demonstrated that the change towards student-centered learning facilitated by portable electronics increased student interest in electrical engineering, built student confidence in their ability to design circuits and systems, and supported the development of a deeper understanding of the theories that the students investigate or apply in the hands-on activities. A summary of the challenges that are faced in the different implementation models and a discussion of best practices are presented.