Vacancy-Driven Disorder and Elevated Dielectric Response in the Pyrochlore Pb1.5Nb2O6.5.

Lone pair-driven distortions are a hallmark of many technologically important lead (Pb)-based materials. The role of Pb2+ in polar perovskites is well understood and easily manipulated for applications in piezo- and ferroelectricity, but the control of ordered lone pair behavior in Pb-based pyrochlores is less clear. Crystallographically and geometrically more complex than the perovskite structure, the pyrochlore structure is prone to geometric frustration of local dipoles due to a triangular arrangement of cations on a diamond lattice. The role of vacancies on the O' site of the pyrochlore network has been implicated as an important driver for the expression and correlation of stereochemically active lone pairs in pyrochlores such as Pb2Ru2O6.5 and Pb2Sn2O6. In this work we report on the structural, dielectric, and heat capacity behavior of the cation- and anion-deficient pyrochlore Pb1.5Nb2O6.5 upon cooling. We find that local distortions are present at all temperatures that can be described by cristobalite-type cation ordering, and this ordering persists to longer length scales upon cooling. From a crystallographic perspective, the material remains disordered and does not undergo an observable phase transition. In combination with density function calculations, we propose that the stereochemical activity of the Pb2+ lone pairs is driven by proximity to O' vacancies, and the crystallographic site disorder of the O' vacancies prohibits long range correlation of lone pair-driven distortions. This in turn prevents a low-temperature phase transition and results in an elevated dielectric permittivity across a broad temperature range.

[1]  R. Seshadri,et al.  Chemistry, Structure, and Function of Lone Pairs in Extended Solids. , 2022, Accounts of chemical research.

[2]  Zhaoming Zhang,et al.  Synthesis and Structure of Oxygen Deficient Lead-Technetium Pyrochlore, the First Example of a Valence V Technetium Oxide , 2021, Frontiers in Chemistry.

[3]  V. Talanov,et al.  Structural Diversity of Ordered Pyrochlores , 2021 .

[4]  T. Proffen,et al.  Lattice Disorder and Oxygen Migration Pathways in Pyrochlore and Defect-Fluorite Oxides , 2021, Chemistry of Materials.

[5]  Carlo Cavazzoni,et al.  Quantum ESPRESSO toward the exascale. , 2020, The Journal of chemical physics.

[6]  A. P. Ramirez,et al.  Os4+ Instability in the Pyrochlore Structure: Tl2-xBixOs2O7-y. , 2020, Inorganic chemistry.

[7]  J. Rondinelli,et al.  Covalency-driven Structural Evolution in the Polar Pyrochlore Series Cd2Nb2O7–xSx , 2019, Chemistry of Materials.

[8]  R. Nagarajan,et al.  Metastable Bi2Zr2O7 with Pyrochlore-like Structure: Stabilization, Oxygen Ion Conductivity, and Catalytic Properties. , 2018, Inorganic chemistry.

[9]  Q. Ramasse,et al.  Universal geometric frustration in pyrochlores , 2018, Nature Communications.

[10]  Nicola Marzari,et al.  Precision and efficiency in solid-state pseudopotential calculations , 2018, npj Computational Materials.

[11]  Megan Peters,et al.  Precise implications for real-space pair distribution function modeling of effects intrinsic to modern time-of-flight neutron diffractometers. , 2018, Acta crystallographica. Section A, Foundations and advances.

[12]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Zhiwei Hu,et al.  High-Pressure Synthesis of the Cobalt Pyrochlore Oxide Pb2Co2O7 with Large Cation Mixed Occupancy. , 2017, Inorganic chemistry.

[14]  M. Kanatzidis,et al.  Dynamic Stereochemical Activity of the Sn(2+) Lone Pair in Perovskite CsSnBr3. , 2016, Journal of the American Chemical Society.

[15]  M. Azuma,et al.  Temperature-Independent, Large Dielectric Constant Induced by Vacancy and Partial Anion Order in the Oxyfluoride Pyrochlore Pb2Ti2O6−δF2δ , 2016 .

[16]  Stefano de Gironcoli,et al.  Reproducibility in density functional theory calculations of solids , 2016, Science.

[17]  V. Pomjakushin,et al.  New synthesis route and magnetic structure of Tm2Mn2O7 pyrochlore. , 2015, Inorganic chemistry.

[18]  P. F. Peterson,et al.  Mantid - Data Analysis and Visualization Package for Neutron Scattering and $μ SR$ Experiments , 2014, 1407.5860.

[19]  P. Roussel,et al.  Ferroelectricity in La2Zr2O7 thin films with a frustrated pyrochlore-type structure , 2014 .

[20]  M. Kanatzidis,et al.  Local off-centering symmetry breaking in the high-temperature regime of SnTe , 2014 .

[21]  M. Tachibana,et al.  X-ray scattering studies of structural phase transitions in pyrochlore Cd2Nb2O7 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  K. Page,et al.  Structural investigation of the substituted pyrochlore AgSbO3 through total scattering techniques. , 2013, Inorganic chemistry.

[23]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[24]  S. Dong,et al.  Multiferroicity in spin ice Ho2Ti2O7: An investigation on single crystals , 2013 .

[25]  Simon J. L. Billinge,et al.  PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions , 2012, 1211.7126.

[26]  S. Mahesh,et al.  Role of bond strength on the lattice thermal expansion and oxide ion conductivity in quaternary pyrochlore solid solutions. , 2012, Inorganic chemistry.

[27]  D. Khomskii Electric dipoles on magnetic monopoles in spin ice , 2012, Nature Communications.

[28]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[29]  J. Nino,et al.  Bi2Ti2O7: It Is Not What You Have Read , 2011 .

[30]  D. Shoemaker,et al.  Reverse Monte Carlo neutron scattering study of the ‘ordered-ice’ oxide pyrochlore Pb2Ru2O6.5 , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  K. Page,et al.  New (Bi1.88Fe0.12)(Fe1.42Te0.58)O6.87 Pyrochlore with Spin-Glass Transition , 2011 .

[32]  D. Shoemaker,et al.  Incoherent Bi off-centering in Bi 2 Ti 2 O 6 O ' and Bi 2 Ru 2 O 6 O ' : Insulator versus metal , 2011, 1101.0791.

[33]  T. Proffen,et al.  Entropically Stabilized Local Dipole Formation in Lead Chalcogenides , 2010, Science.

[34]  C. Paulmann,et al.  The crystal structure of Cd2Nb2O7: symmetry mode analysis of the ferroelectric phase , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  C. Fennie,et al.  Atomic displacements in the charge ice pyrochlore Bi 2 Ti 2 O 6 O ' studied by neutron total scattering , 2010, 1001.1368.

[36]  M. Gingras,et al.  Magnetic Pyrochlore Oxides , 2009, 0906.3661.

[37]  J. Wan,et al.  Coexistence of magnetic and ferroelectric behaviors of pyrochlore Ho2Ti2O7 , 2009 .

[38]  S. Uma,et al.  Facile room temperature ion-exchange synthesis of Sn(2+) incorporated pyrochlore-type oxides and their photocatalytic activities. , 2009, Inorganic chemistry.

[39]  A. Hector,et al.  Large low-temperature specific heat in pyrochlore Bi2Ti2O7 , 2009, 0904.1582.

[40]  M. Allix,et al.  Highly Conducting Redox Stable Pyrochlore Oxides , 2008 .

[41]  K. Schwarz,et al.  Structure and stability of Cd 2 Nb 2 O 7 and Cd 2 Ta 2 O 7 explored by ab initio calculations , 2008 .

[42]  R. Cava,et al.  Frustrated ferroelectricity in niobate pyrochlores , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[43]  Jinhua Ye,et al.  Photocatalytic activities of AgSbO3 under visible light irradiation , 2008 .

[44]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  D. Safarik,et al.  Similarities in the Cp/T3 peaks in amorphous and crystalline metals. , 2006, Physical review letters.

[46]  R. Seshadri Lone pairs in insulating pyrochlores: Ice rules and high-k behavior , 2005, cond-mat/0507634.

[47]  Armel Le Bail,et al.  Whole powder pattern decomposition methods and applications: A retrospection , 2005, Powder Diffraction.

[48]  S. Fujihara,et al.  Multiband orange-red luminescence of Eu3+ ions based on the pyrochlore-structured host crystal , 2005 .

[49]  K. Schwarz,et al.  Geometric frustration, electronic instabilities, and charge singlets in Y2Nb2O7. , 2004, Physical review letters.

[50]  P. Halasyamani Asymmetric Cation Coordination in Oxide Materials: Influence of Lone-Pair Cations on the Intra-octahedral Distortion in d0 Transition Metals , 2004 .

[51]  M. Tachibana,et al.  Calorimetric investigation of successive phase transitions in Cd 2 Nb 2 O 7 , 2004 .

[52]  A. Hector,et al.  Synthesis and structural study of stoichiometric Bi2Ti2O7 pyrochlore , 2004 .

[53]  R. Cava,et al.  Static disorder from lone-pair electrons in Bi2−xMxRu2O7−y (M=Cu,Co; x=0,0.4) pyrochlores , 2002 .

[54]  I. Reaney,et al.  Structure and Dielectric Properties of Lead Pyrochlores , 2002 .

[55]  M. Lanagan,et al.  Structural study of an unusual cubic pyrochlore Bi1.5Zn0.92Nb1.5O6.92 , 2002 .

[56]  M. Weller,et al.  Syntheses, structures and properties of some osmates (IV,V) adopting the pyrochlore and weberite structures , 2002 .

[57]  P. Czarnecki,et al.  2–5 pyrochlore relaxor ferroelectric Cd2Nb2O7 and its Fe2+/Fe3+ modifications , 2001 .

[58]  J. Petzelt,et al.  Phase transitions sequence in pyrochlore Cd2Nb2O7 studied by IR reflectivity , 2001 .

[59]  W. Bednarski,et al.  EPR spectroscopy and optical microscopy study of ferroic states in pyrochlore , 1998 .

[60]  O. Lebedev,et al.  Synthesis and structural study of Pb2Re2O7-x pyrochlores , 1998 .

[61]  J. S. Evans,et al.  Synthesis and Structure of Pyrochlore-Type Bismuth Titanate , 1998 .

[62]  N. Menguy,et al.  Stoichiometry, Defects, and Ordering in Lead Tantalum Oxides with Pyrochlore-Related Structures , 1996 .

[63]  B. Kennedy Oxygen Vacancies in Pyrochlore Oxides: Powder Neutron Diffraction Study of Pb2Ir2O6.5and Bi2Ir2O7−y , 1996 .

[64]  J. Stȩpień‐Damm,et al.  Temperature dependence of the crystal structure and dynamic disorder of cadmium in cadmium pyroniobates [Cd2Nb2O7 and Cd2Ta2O7] , 1994 .

[65]  Z. Ye,et al.  Optical and electric investigations of the phase transitions in pyrochlore Cd2Nb2O7 , 1991 .

[66]  J. N. Reimers,et al.  The crystal structure of the spin-glass pyrochlore, Y2Mo2O7 , 1988 .

[67]  G. V. Subba Rao,et al.  Oxide pyrochlores — A review , 1983 .

[68]  W. Hoffmann,et al.  Die Kristallstrukturen der Bleiniobate vom Pyrochlor-Typ , 1982 .

[69]  M. Verkerk,et al.  STRUCTURE AND CONDUCTIVITY OF PYROCHLORE AND FLUORITE TYPE SOLID SOLUTIONS , 1981 .

[70]  G. Smolensky,et al.  Photoluminescence and carrier drift mobility at the ferroelectric phase transitions , 1980 .

[71]  J. Lucas,et al.  Les pyrochlores ferroelectriques derives de Cd2Nb2O6S: Mise en évidence des transitions de phase par des techniques d'optique non linéaire , 1976 .

[72]  T. Kawamura,et al.  Ferroelectric, Electrooptic and Piezoelectric Properties of Nd2Ti2O7 Single Crystal , 1974 .

[73]  A. Sleight High pressure synthesis of platinum metal pyrochlores of the type Pb2M2O6–7 , 1971 .

[74]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[75]  G. Shirane,et al.  Dielectric, X-Ray, and Optical Study of Ferroelectric Cd 2 Nb 2 O 7 and Related Compounds , 1955 .

[76]  H. Jaffe,et al.  Ferroelectricity in Oxides of Face-Centered Cubic Structure , 1953 .