Insertion of C50 into single‐walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers

The structures and electronic properties of nanoscale “peapods,” i.e., C50 fullerenes inside single‐walled carbon nanotubes (SWCNTs), were computationally investigated by density functional theory (DFT). Both zigzag and armchair SWCNTs with diameters larger than 1.17 nm can encapsulate C50 fullerenes exothermically. Among the SWCNTs considered, (9,9) and (16,0) SWCNTs are the best sheaths for both D3 and D5h isomers of C50, corresponding to 0.32–0.34 nm tube‐C50 distances. The orientation of C50 inside nanotubes also affects the insertion energies, which depend on the actual tube‐fullerene distances. The insertion of D3 and D5h isomers of C50 is somewhat selective; the less stable D5h isomer can be encapsulated more favorably inside SWCNTs at same tube‐C50 spacing. Because of the weak tube‐C50 interaction, the geometric and electronic structures of the peapods do not change greatly for the most stable configurations, but the selectivity in the interwall spacing and isomer encapsulation can be useful in separating various carbon fullerenes and their isomers. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2008

[1]  Toshiya Okazaki,et al.  Evidence for the intramolecular motion of Gd atoms in a Gd2@C92 nanopeapod , 2003 .

[2]  R. Smalley,et al.  Uranium Stabilization of C28: A Tetravalent Fullerene , 1992, Science.

[3]  Xiufang Xu,et al.  Comparative theoretical study of methano- and imino-[50] fullerenes : C50CH2 and C50NH , 2006 .

[4]  Xu Zhang,et al.  Capturing the Labile Fullerene[50] as C50Cl10 , 2004, Science.

[5]  Jing Lu,et al.  Strongly size-dependent electronic properties inC60-encapsulated zigzag nanotubes and lower size limit of carbon nanopeapods , 2003 .

[6]  Emmanuel Flahaut,et al.  Hybrid carbon nanotubes: Strategy, progress, and perspectives , 2006 .

[7]  Wang Yang,et al.  Structures and Electronic Properties of C36 Encapsulated in Single-wall Carbon Nanotubes , 2005 .

[8]  Andreas Hirsch,et al.  Molecular peapods as supramolecular carbon allotropes. , 2004, Angewandte Chemie.

[9]  Manuel Alcamí,et al.  Fullerene C50: Sphericity takes over, not strain , 2005 .

[10]  Susumu Okada,et al.  Electron-state control of carbon nanotubes by space and encapsulated fullerenes , 2003 .

[11]  Gang Su,et al.  Crystalline and electronic structures of the molecular solid C 50 Cl 10 : First-principles calculation , 2006 .

[12]  Wim Klopper,et al.  DFT study of fullerene dimers. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  F. Simon,et al.  Diameter selective reaction processes of single-wall carbon nanotubes , 2004, cond-mat/0403179.

[14]  K. Michel,et al.  Nanotube field and orientational properties ofC70molecules in carbon nanotubes , 2007 .

[15]  G. Kresse,et al.  Density functional calculations for C60 peapods , 2004 .

[16]  For a recent review , 1973 .

[17]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[18]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[19]  M. Chorro,et al.  Orientation of C{sub 70} molecules in peapods as a function of the nanotube diameter , 2007 .

[20]  L Forró,et al.  Magnetic fullerenes inside single-wall carbon nanotubes. , 2006, Physical review letters.

[21]  Xiufang Xu,et al.  Theoretical studies of the substitution patterns of boron-nitrogen (BN) fullerenes: from C50 up to C20B15N15 CBN ball. , 2005, The journal of physical chemistry. A.

[22]  C Colliex,et al.  Element-selective single atom imaging. , 2000, Science.

[23]  Toshiya Okazaki,et al.  Entrapping of exohedral metallofullerenes in carbon nanotubes: (CsC60)n@SWNT nano-peapods. , 2005, Journal of the American Chemical Society.

[24]  Andrei N. Khlobystov,et al.  Transport and TEM on dysprosium metallofullerene peapods , 2006 .

[25]  S. Okada,et al.  Energetics and electronic structures of encapsulated C60 in a carbon nanotube. , 2001, Physical review letters.

[26]  S. Iijima,et al.  One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. , 2000, Physical review letters.

[27]  Bin Wen,et al.  Novel Carbon Nanotube Peapods Encapsulating Au 32 Golden Fullerene , 2006 .

[28]  K. Nakamoto,et al.  Electronic structures and spectral properties of endohedral fullerenes , 2005 .

[29]  David E. Luzzi,et al.  Tumbling atoms and evidence for charge transfer in La2@C80@SWNT , 2000 .

[30]  Francesco Zerbetto,et al.  Mechanical Interactions in All-Carbon Peapods , 2003 .

[31]  Allen T. Chwang,et al.  Quasi-reversible energy flows in carbon-nanotube oscillators , 2006 .

[32]  Libor Juha,et al.  Transformation of fullerene peapods to double-walled carbon nanotubes induced by UV radiation , 2005 .

[33]  Shigeru Nagase,et al.  Endofullerenes : a new family of carbon clusters , 2002 .

[34]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[35]  Susumu Okada,et al.  Energetics and electronic structures of one-dimensional fullerene chains encapsulated in zigzag nanotubes , 2003 .

[36]  R. S. Wang,et al.  D5hC50X10: Saturn-like fullerene derivatives (X=F, Cl, Br) , 2005 .

[37]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[38]  A. Rochefort Electronic and transport properties of carbon nanotube peapods , 2003 .

[39]  V. Ivanovskaya,et al.  New one-dimensional crystals of (Sc,Ti,V)8C12 metallocarbohedrenes in carbon and boron–nitrogen (12,0) nanotubes: quantum chemical simulation of the electronic structure , 2002 .

[40]  Paul S. Hsu,et al.  Structural, Electronic, and Spectroscopic Properties of Saturn-Type Labile Fullerene C 50 Derivatives , 2006 .

[41]  Marc Monthioux,et al.  Who should be given the credit for the discovery of carbon nanotubes , 2006 .

[42]  Yoshinori Ando,et al.  Carbon species confined inside carbon nanotubes: A density functional study , 2003 .

[43]  Xiang Zhao,et al.  On the structure and relative stability of C50 fullerenes. , 2005, The journal of physical chemistry. B.

[44]  Yi Luo,et al.  Characterization of the electronic structure of C50Cl10 by means of soft x-ray spectroscopies. , 2005, The Journal of chemical physics.

[45]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[46]  Wang,et al.  Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. , 1991, Physical review. B, Condensed matter.

[47]  Andreas Hirsch,et al.  Spherical Aromaticity in Ih Symmetrical Fullerenes: The 2(N+1)2 Rule. , 2000, Angewandte Chemie.

[48]  M. Monthioux,et al.  Encapsulated C60 in carbon nanotubes , 1998, Nature.

[49]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[50]  Takashi Yumura,et al.  Local modifications of single-wall carbon nanotubes induced by bond formation with encapsulated fullerenes. , 2007, The journal of physical chemistry. B.

[51]  Jijun Zhao,et al.  Optical excitation and absorption spectra of C50Cl10. , 2004, The Journal of chemical physics.

[52]  Toshiya Okazaki,et al.  Electron diffraction study of one-dimensional crystals of fullerenes , 2001 .

[53]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[54]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[55]  Y. X. Wang,et al.  Mechanics of Nanotubes Filled with C60, C36 and C20 , 2003 .

[56]  H. Kroto,et al.  Space, Stars, C60, and Soot , 1988, Science.

[57]  Wei Zhang,et al.  Valence of D5h C50 fullerene. , 2007, The journal of physical chemistry. A.

[58]  Hiromichi Kataura,et al.  Optical properties of fullerene and non-fullerene peapods , 2002 .

[59]  David E. Luzzi,et al.  Carbon cage structures in single wall carbon nanotubes: a new class of materials , 2000 .

[60]  Gotthard Seifert,et al.  D5h C50 Fullerene: A Building Block for Oligomers and Solids? , 2004 .

[61]  Arzhang Ardavan,et al.  Chemical reactions inside single-walled carbon nano test-tubes. , 2005, Chemical communications.

[62]  A. Oberlin,et al.  Filamentous growth of carbon through benzene decomposition , 1976 .

[63]  Yutaka Ohno,et al.  Ambipolar field-effect transistor behavior of Gd@C82 metallofullerene peapods , 2002 .

[64]  Malcolm L. H. Green,et al.  Structural characterization of atomically regulated nanocrystals formed within single-walled carbon nanotubes using electron microscopy. , 2002, Accounts of chemical research.

[65]  S. Iijima,et al.  Direct imaging of Sc2@C84 molecules encapsulated inside single-wall carbon nanotubes by high resolution electron microscopy with atomic sensitivity. , 2003, Physical review letters.

[66]  Paul von Ragué Schleyer,et al.  Properties of fullerene[50] and D5h decachlorofullerene[50]: a computational study. , 2004, Journal of the American Chemical Society.

[67]  Patrick W. Fowler,et al.  Electronic structure of small fullerenes : evidence for the high stability of C32 , 1998 .

[68]  Zhongfang Chen,et al.  Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C60) and single-walled carbon nanotubes. , 2005, Chemical reviews.

[69]  Georg Kresse,et al.  Density functional calculations for C 60 peapods , 2004 .

[70]  Takashi Yumura,et al.  Direct imaging of intracage structure in titanium-carbide endohedral metallofullerene , 2006 .

[71]  Arzhang Ardavan,et al.  Selective host-guest interaction of single-walled carbon nanotubes with functionalised fullerenes. , 2004, Chemical communications.

[72]  Gyu-Tae Kim,et al.  Temperature-induced change from p to n conduction in metallofullerene nanotube peapods , 2001 .

[73]  R. King,et al.  Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. , 2005, Chemical reviews.

[74]  Xiufang Xu,et al.  Theoretical study of structure and stability of fullerene derivative: C50O , 2005 .

[75]  Jijun Zhao,et al.  Cluster-assembled materials based on Na 6 Pb , 2003 .

[76]  Yoshiyuki Kawazoe,et al.  Design of a heterostructure peapod using magic silicon clusters , 2002 .

[77]  David E. Luzzi,et al.  Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis , 2000 .

[78]  Fu-He Wang,et al.  Density functional calculations of the polarizability and second-order hyperpolarizability of C~5~0Cl~1~0 (5 pages) , 2005 .

[79]  Masako Yudasaka,et al.  Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes , 2001 .

[80]  James R. Heath,et al.  Fullerenes: C60's smallest cousin , 1998, Nature.

[81]  Sumio Iijima,et al.  Carbon nanotubes: past, present, and future , 2002 .

[82]  Susumu Okada,et al.  Energetics and electronic structure of C70-peapods and one-dimensional chains of C70 , 2003 .

[83]  M. Monthioux Filling single-wall carbon nanotubes , 2002 .

[84]  F. Simon,et al.  Encapsulating C59N azafullerenes inside single‐wall carbon nanotubes , 2006, cond-mat/0602636.

[85]  A. Khlobystov,et al.  Noncovalent interactions of molecules with single walled carbon nanotubes. , 2006, Chemical Society reviews.