Tsunamis: bridging science, engineering and society

Tsunamis are high-impact, long-duration disasters that in most cases allow for only minutes of warning before impact. Since the 2004 Boxing Day tsunami, there have been significant advancements in warning methodology, pre-disaster preparedness and basic understanding of related phenomena. Yet, the trail of destruction of the 2011 Japan tsunami, broadcast live to a stunned world audience, underscored the difficulties of implementing advances in applied hazard mitigation. We describe state of the art methodologies, standards for warnings and summarize recent advances in basic understanding, and identify cross-disciplinary challenges. The stage is set to bridge science, engineering and society to help build up coastal resilience and reduce losses.

[1]  C. Synolakis,et al.  Tsunami Dynamics, Forecasting, and Mitigation , 2015 .

[2]  K. Wünnemann,et al.  The meteorite impact-induced tsunami hazard , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  H. Kanamori Mechanism of tsunami earthquakes , 1972 .

[4]  Vasily Titov,et al.  The Global Reach of the 26 December 2004 Sumatra Tsunami , 2005, Science.

[5]  Costas E. Synolakis,et al.  Runup and rundown generated by three-dimensional sliding masses , 2005, Journal of Fluid Mechanics.

[6]  N. Vayatis,et al.  Can small islands protect nearby coasts from tsunamis? An active experimental design approach , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  Gavin P. Hayes,et al.  Tsunami Forecast by Joint Inversion of Real-Time Tsunami Waveforms and Seismic or GPS Data: Application to the Tohoku 2011 Tsunami , 2014, Pure and Applied Geophysics.

[8]  J. Borrero,et al.  Modeling the transport and accumulation floating debris generated by the 11 March 2011 Tohoku tsunami. , 2013, Marine pollution bulletin.

[9]  H. Fritz,et al.  Observations and Modeling of the August 27, 2012 Earthquake and Tsunami affecting El Salvador and Nicaragua , 2014, Pure and Applied Geophysics.

[10]  G. Pedersen,et al.  On the characteristics of landslide tsunamis , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Philippe Guyenne,et al.  A Fully Nonlinear Model for Three-dimensional Overturning Waves over Arbitrary Bottom 1 , 1997 .

[12]  C. E. Synolakis,et al.  Validation and Verification of Tsunami Numerical Models , 2008 .

[13]  Chao An,et al.  Characteristics of Leading Tsunami Waves Generated in Three Recent Tsunami Events , 2014 .

[14]  Tadepalli,et al.  Model for the Leading Waves of Tsunamis. , 1996, Physical review letters.

[15]  H. Kanamori,et al.  Ionospheric detection of gravity waves induced by tsunamis , 2005 .

[16]  Costas E Synolakis,et al.  Tsunami: wave of change. , 2006, Scientific American.

[17]  Yan Y. Kagan,et al.  Tohoku earthquake: a surprise? , 2011, 1112.5217.

[18]  Stephan T. Grilli,et al.  A fully non‐linear model for three‐dimensional overturning waves over an arbitrary bottom , 2001 .

[19]  Bruce D. Spencer,et al.  Metrics for Assessing Earthquake‐Hazard Map Performance , 2015 .

[20]  M. Maslin,et al.  Linking continental-slope failures and climate change: Testing the clathrate gun hypothesis , 2004 .

[21]  E. Okal Predicting large tsunamis , 1993, Nature.

[22]  M. Berry Focused tsunami waves , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Fumihiko Imamura,et al.  Tsunami in Papua New Guinea was as intense as first thought , 1999 .

[24]  M. Piggott,et al.  Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake , 2008 .

[25]  J. Borrero,et al.  Tsunami currents in ports , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  S. Stein,et al.  Ultralong Period Seismic Study of the December 2004 Indian Ocean Earthquake and Implications for Regional Tectonics and the Subduction Process , 2007 .

[27]  Z. Kowalik,et al.  Kuril Islands tsunami of November 2006: 2. Impact at Crescent City by local enhancement , 2008 .

[28]  C. O. Hines,et al.  On the possible detection of tsunamis by a monitoring of the ionosphere , 1976 .

[29]  Steven N. Ward,et al.  RELATIONSHIPS OF TSUNAMI GENERATION AND AN EARTHQUAKE SOURCE , 1980 .

[30]  Michael C. Spillane,et al.  Real‐time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines , 2008 .

[31]  E. Okal Seismic parameters controlling far-field tsunami amplitudes: A review , 1988 .

[32]  K. Satake Geological and historical evidence of irregular recurrent earthquakes in Japan , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Costas E. Synolakis,et al.  Runup Measurements of the December 2004 Indian Ocean Tsunami , 2006 .

[34]  N. Shuto,et al.  A short history of tsunami research and countermeasures in Japan , 2009, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[35]  Charitha Pattiaratchi,et al.  A New Tool for Inundation Modeling: Community Modeling Interface for Tsunamis (ComMIT) , 2011 .

[36]  B. Goodman-Tchernov,et al.  Archaeological evidence for the tsunami of January 18, A.D. 749: a chapter in the history of Early Islamic Qâysariyah (Caesarea Maritima) , 2014, Journal of Roman Archaeology.

[37]  Pedro Elosegui,et al.  The 2010 Mw 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near‐field GPS data , 2012 .

[38]  Hermann M. Fritz,et al.  Hurricane Katrina Storm Surge Reconnaissance , 2008 .

[39]  C. Synolakis,et al.  Tsunami Catalogs for the Eastern Mediterranean, Revisited , 2010 .

[40]  C. Synolakis,et al.  The Vulnerability of Crescent City, California, to Tsunamis Generated by Earthquakes in the Kuril Islands Region of the Northwestern Pacific , 2008 .

[41]  E. Okal,et al.  The 1956 earthquake and tsunami in Amorgos, Greece , 2009 .

[42]  Hermann M. Fritz,et al.  Cyclone Nargis storm surge in Myanmar , 2009 .

[43]  E. Okal,et al.  Rodrigues, Mauritius, and Réunion Islands Field Survey after the December 2004 Indian Ocean Tsunami , 2006 .

[44]  A Comparison Study of Two Numerical Tsunami Forecasting Systems , 2008 .

[45]  Robert J. Geller,et al.  Why earthquake hazard maps often fail and what to do about it , 2012 .

[46]  M. Urlaub,et al.  Timing and frequency of large submarine landslides: implications for understanding triggers and future geohazard , 2013 .

[47]  Vasily Titov,et al.  FIELD SURVEY OF MEXICAN TSUNAMI PRODUCES NEW DATA, UNUSUAL PHOTOS , 1997 .

[48]  C. Pattiaratchi,et al.  Are meteotsunamis an underrated hazard? , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  Emile A. Okal Frontiers of Geophysics: The 2004 Sumatra Mega Earthquake: Lessons From a Monster , 2005 .

[50]  Vasily Titov,et al.  Numerical Modeling of Tidal Wave Runup , 1998 .

[51]  V. Titov,et al.  The July 15, 2009 Fiordland, New Zealand Tsunami: Real-Time Assessment , 2011 .

[52]  V. Titov,et al.  Tsunami: scientific frontiers, mitigation, forecasting and policy implications , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  R. Patterson,et al.  Geoarchaeology of the ancient harbor site of Caesarea Maritima, Israel; evidence from sedimentology and paleoecology of benthic foraminifera , 1994 .

[54]  Hiroo Kanamori,et al.  Seismicity and the subduction process , 1980 .

[55]  Robert J. Geller,et al.  Shake-up time for Japanese seismology , 2011, Nature.

[56]  Eli A. Silver,et al.  The slump origin of the 1998 Papua New Guinea Tsunami , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[57]  S. Stein,et al.  How much can we clear the crystal ball , 2014 .

[58]  M. Urlaub,et al.  Large Submarine Landslides on Continental Slopes: Geohazards, Methane Release, and Climate Change , 2014 .

[59]  Donald B. Percival,et al.  Extraction of tsunami source coefficients via inversion of DART$$^{\circledR}$$ buoy data , 2011 .

[60]  Costas E. Synolakis,et al.  1992–2002: Perspective on a Decade of Post-Tsunami Surveys , 2005 .

[61]  Hermann M. Fritz,et al.  Extreme runup from the 17 July 2006 Java tsunami , 2007 .

[62]  R. Paris Source mechanisms of volcanic tsunamis , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[63]  S. Stein,et al.  Comparing the Performance of Japan’s Earthquake Hazard Maps to Uniform and Randomized Maps , 2015 .

[64]  Asteroid and comet impacts: the ultimate environmental catastrophe , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[65]  J. Jackson,et al.  Tsunami earthquake generation by the release of gravitational potential energy , 2012 .

[66]  Z. Kowalik,et al.  Kuril Islands tsunami of November 2006: 1. Impact at Crescent City by distant scattering , 2008 .

[67]  Vasily V. Titov,et al.  Real-Time Tsunami Forecasting: Challenges and Solutions , 2003 .

[68]  E. Okal Normal Mode Energetics for Far-field Tsunamis Generated by Dislocations and Landslides , 2003 .

[69]  S. Sweet,et al.  Tectonics and Slumping in the Source Region of the 1998 Papua New Guinea Tsunami from Seismic Reflection Images , 2003 .

[70]  C. Synolakis,et al.  Palaeotsunamis and tsunami hazards in the Eastern Mediterranean , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  J. Borrero,et al.  Observations and modeling of tsunami-induced currents in ports and harbors , 2012 .

[72]  S. Stein,et al.  Promise and Paradox : Why Improved Knowledge of Plate Tectonics Has Not Yielded Correspondingly Better Earthquake Hazard Maps , 2016 .

[73]  J Behrens,et al.  New computational methods in tsunami science , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[74]  C. Synolakis,et al.  The run-up of N-waves on sloping beaches , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[75]  J. Austin,et al.  Deterioration of Israel's Caesarea Maritima's ancient harbor linked to repeated tsunami events identified in geophysical mapping of offshore stratigraphy , 2015 .

[76]  Nobuhito Mori,et al.  Survey of 2011 Tohoku earthquake tsunami inundation and run‐up , 2011 .

[77]  Hermann M. Fritz,et al.  Oman Field Survey after the December 2004 Indian Ocean Tsunami , 2006 .

[78]  C. Synolakis,et al.  Tsunamis within the Eastern Santa Barbara Channel , 2001 .

[79]  C. Synolakis,et al.  Focusing of long waves with finite crest over constant depth , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[80]  C. Synolakis,et al.  A review of coastal community vulnerabilities toward resilience benefits from disaster reduction measures , 2010 .

[81]  Costas E. Synolakis,et al.  Long wave runup on piecewise linear topographies , 1998, Journal of Fluid Mechanics.

[82]  Emile A. Okal,et al.  Seismology: Speed and size of the Sumatra earthquake , 2005, Nature.

[83]  Hermann M. Fritz,et al.  The 2011 Japan tsunami current velocity measurements from survivor videos at Kesennuma Bay using LiDAR , 2012 .

[84]  Lori Dengler,et al.  Emergency response and field observation activities of geoscientists in California (USA) during the September 29, 2009, Samoa Tsunami , 2011 .

[85]  C. Synolakis,et al.  Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini , 2008 .

[86]  Hélène Hébert,et al.  Three‐dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami , 2006 .

[87]  L. Ewing Resilience from coastal protection , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[88]  H. Huppert,et al.  Extreme natural hazards: population growth, globalization and environmental change , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[89]  Vasily Titov,et al.  Modeling of Breaking and Nonbreaking Long-Wave Evolution and Runup Using VTCS-2 , 1995 .

[90]  Utku Kânoğlu,et al.  The Fukushima accident was preventable , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[91]  Shunichi Koshimura,et al.  Response to the 2011 Great East Japan Earthquake and Tsunami disaster , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[92]  James Jackson,et al.  Fatal attraction: living with earthquakes, the growth of villages into megacities, and earthquake vulnerability in the modern world , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[93]  C. Synolakis,et al.  Tsunami sources in the southern California bight , 2004 .

[94]  Harry Yeh,et al.  Propagation and amplification of tsunamis at coastal boundaries , 1994, Nature.

[95]  Harry Yeh,et al.  Tsunamigenic Sea-Floor Deformations , 1997, Science.

[96]  Costas E. Synolakis,et al.  Extreme inundation flows during the Hokkaido‐Nansei‐Oki Tsunami , 1997 .

[97]  H. Fritz,et al.  Repeat Storm Surge Disasters of Typhoon Haiyan and Its 1897 Predecessor in the Philippines , 2016 .

[98]  Michael C. Spillane,et al.  Development of the Forecast Propagation Database for NOAA's Short-term Inundation Forecast for Tsunamis (SIFT) , 2008 .

[99]  V. Titov,et al.  Direct energy estimation of the 2011 Japan tsunami using deep‐ocean pressure measurements , 2012 .

[100]  S. Stein,et al.  Bayes and BOGSAT: Issues in When and How to Revise Earthquake Hazard Maps (IPR-WP-14-14) , 2014 .

[101]  E. Okal,et al.  Madagascar Field Survey after the December 2004 Indian Ocean Tsunami , 2006 .

[102]  Vasily Titov,et al.  Evolution of tsunami warning systems and products , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[103]  Stephan T. Grilli,et al.  Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides , 2002 .

[104]  Anders Lundbladh,et al.  Very large structures in plane turbulent Couette flow , 1996, Journal of Fluid Mechanics.

[105]  R. Wynn,et al.  Frequency and timing of landslide-triggered turbidity currents within the Agadir Basin, offshore NW Africa: Are there associations with climate change, sea level change and slope sedimentation rates? , 2013 .

[106]  A. Schimmelmann,et al.  Correction to ``Santa Barbara Basin Study Extends Global Climate Record'' , 2006 .

[107]  Yong-Sik Cho,et al.  Runup of solitary waves on a circular Island , 1995, Journal of Fluid Mechanics.

[108]  Michael J. Briggs,et al.  Laboratory experiments of tsunami runup on a circular island , 1995 .

[109]  Fumihiko Imamura,et al.  The Flores Island tsunamis , 1993 .

[110]  E. Okal The quest for wisdom: lessons from 17 tsunamis, 2004–2014 , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[111]  Eddie N. Bernard,et al.  The 1987–88 Alaskan Bight tsunamis: Deep ocean data and model comparisons , 1991 .

[112]  V. Titov,et al.  Development, testing, and applications of site‐specific tsunami inundation models for real‐time forecasting , 2009 .

[113]  E. Okal T Waves from the 1998 Papua New Guinea Earthquake and its Aftershocks: Timing the Tsunamigenic Slump , 2003 .