Characterization of the reaction environment in a filter-press redox flow reactor

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  H. E. WATSON,et al.  Industrial Electrochemistry , 1941, Nature.

[3]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[4]  D. J. Pickett Electrochemical reactor design , 1977 .

[5]  A. Wragg,et al.  The modelling of concentration—time relationships in recirculating electrochemical reactor systems , 1977 .

[6]  R. J. Marshall,et al.  A review of some recent electrolytic cell designs , 1985 .

[7]  M. Bartolozzi Development of redox flow batteries. A historical bibliography , 1989 .

[8]  I. Vogel,et al.  On some problems of the zinc-bromine system as an electric energy storage system of higher efficiency. I, Kinetics of the bromine electrode , 1991 .

[9]  C. Wan,et al.  A comparative study of electrochemical reactor configurations for the decomposition of copper cyanide effuent , 1992 .

[10]  J. Bisang,et al.  Effect of mass transfer on the current distribution in monopolar and bipolar electrochemical reactors with a gas-evolving electrode , 1993 .

[11]  Frank C. Walsh,et al.  A first course in electrochemical engineering , 1993 .

[12]  H. Girault,et al.  Coplanar interdigitated band electrodes for electrosynthesis , 1994 .

[13]  J. F. Goodridge,et al.  Electrochemical Process Engineering: A Guide to the Design of Electrolytic Plant , 1995 .

[14]  K. Scott,et al.  Production of ethene oxide in a sieve plate electrochemical reactor Part I: Influence of sieve plate design, electrode material and pH , 1996 .

[15]  W. M. Taama,et al.  A study of current distribution in a DEM cell during bromate formation , 1998 .

[16]  M. Ghouse Characterization of PTFE-bonded porous carbonelectrodes tested in a 100W phosphoric acid fuel cell(PAFC) stack using XPS and ICP–AES techniques , 1998 .

[17]  A. Price,et al.  A novel approach to utility scale energy storage [regenerative fuel cells] , 1999 .

[18]  S. Koparal,et al.  Removal of cyanide by anodic oxidation for wastewater treatment , 1999 .

[19]  Paul Leonard Adcock,et al.  Bipolar plate materials for solid polymer fuel cells , 2000 .

[20]  Hakim Lounici,et al.  Defluoridation of Sahara water by small plant electrocoagulation using bipolar aluminium electrodes , 2001 .

[21]  F. Walsh,et al.  Electrochemical technology for environmental treatment and clean energy conversion , 2001 .

[22]  E. Modica,et al.  Development and operation of a 150 W air-feed direct methanol fuel cell stack , 2001 .

[23]  J. Newman,et al.  Modeling of a Two-Phase Electrochemical Reactor for the Fluorination of Organic Compounds. 2. Multiple Steady States , 2001 .

[24]  C. R. Martin,et al.  Ceftibuten:† Development of a Commercial Process Based on Cephalosporin C. Part IV. Pilot-Plant Scale Electrochemical Reduction of 3-Acetoxymethyl-7(R)-glutaroylaminoceph-3-em-4-carboxylic Acid 1(S)-Oxide , 2002 .

[25]  C. Pliangos,et al.  Electrochemical promotion of conventional and bipolar reactor configurations for NO reduction , 2002 .

[26]  N. Ivanova,et al.  Kinetics of Copper(II) Electrodeposition from Dilute Electrolytes with a Bipolar Electrode , 2002 .

[27]  N. Brandon,et al.  Laboratory study of electro-coagulation-flotation for water treatment. , 2002, Water research.

[28]  M. Skyllas-Kazacos,et al.  Novel bipolar electrodes for battery applications , 2002 .

[29]  V. Hessel,et al.  Micro reactor for electroorganic synthesis in the simulated moving bed-reaction and separation environment , 2003 .

[30]  Mojtaba Shamsipur,et al.  A novel dry bipolar rechargeable battery based on polyaniline , 2003 .

[31]  Maria Skyllas-Kazacos,et al.  Membrane stability studies for vanadium redox cell applications , 2004 .

[32]  M. Gattrell,et al.  Study of the Mechanism of the Vanadium 4+/5+ Redox Reaction in Acidic Solutions , 2004 .

[33]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .