The Role of Energy Minimization in Algebraic Multigrid Interpolation

Algebraic multigrid (AMG) methods are powerful solvers with linear or near-linear computational complexity for certain classes of linear systems, Ax=b. Broadening the scope of problems that AMG can effectively solve requires the development of improved interpolation operators. Such development is often based on AMG convergence theory. However, convergence theory in AMG tends to have a disconnect with AMG in practice due to the practical constraints of (i) maintaining matrix sparsity in transfer and coarse-grid operators, and (ii) retaining linear complexity in the setup and solve phase. This paper presents a review of fundamental results in AMG convergence theory, followed by a discussion on how these results can be used to motivate interpolation operators in practice. A general weighted energy minimization functional is then proposed to form interpolation operators, and a novel `diagonal' preconditioner for Sylvester- or Lyapunov-type equations developed simultaneously. Although results based on the weighted energy minimization typically underperform compared to a fully constrained energy minimization, numerical results provide new insight into the role of energy minimization and constraint vectors in AMG interpolation.

[1]  Fei Cao,et al.  Optimal Interpolation and Compatible Relaxation in Classical Algebraic Multigrid , 2017, SIAM J. Sci. Comput..

[2]  Thomas A. Manteuffel,et al.  A Root-Node-Based Algebraic Multigrid Method , 2016, SIAM J. Sci. Comput..

[3]  Yvan Notay,et al.  Algebraic Theory of Two-Grid Methods , 2015 .

[4]  Scott P. MacLachlan,et al.  Theoretical bounds for algebraic multigrid performance: review and analysis , 2014, Numer. Linear Algebra Appl..

[5]  Panayot S. Vassilevski,et al.  Adaptive AMG with coarsening based on compatible weighted matching , 2013, Comput. Vis. Sci..

[6]  Jacob B. Schroder,et al.  Smoothed aggregation solvers for anisotropic diffusion , 2012, Numer. Linear Algebra Appl..

[7]  Robert D. Falgout,et al.  Scaling Hypre's Multigrid Solvers to 100, 000 Cores , 2011, High-Performance Scientific Computing.

[8]  Jacob B. Schroder,et al.  A General Interpolation Strategy for Algebraic Multigrid Using Energy Minimization , 2011, SIAM J. Sci. Comput..

[9]  Achi Brandt,et al.  Bootstrap AMG , 2011, SIAM J. Sci. Comput..

[10]  Yanjun Liu,et al.  Gradient based and least squares based iterative algorithms for matrix equations AXB + CXTD = F , 2010, Appl. Math. Comput..

[11]  P S Vassilevski,et al.  Lecture Notes on Multigrid Methods , 2010 .

[12]  Feng Ding,et al.  Iterative solutions to matrix equations of the form AiXBi=Fi , 2010, Comput. Math. Appl..

[13]  Jacob B. Schroder,et al.  Smoothed aggregation for Helmholtz problems , 2010, Numer. Linear Algebra Appl..

[14]  Ulrike Meier Yang,et al.  Improving algebraic multigrid interpolation operators for linear elasticity problems , 2010, Numer. Linear Algebra Appl..

[15]  M. Dehghan,et al.  The general coupled matrix equations over generalized bisymmetric matrices , 2010 .

[16]  R. Falgout,et al.  Compatible Relaxation and Coarsening in Algebraic Multigrid , 2009, SIAM J. Sci. Comput..

[17]  Valeria Simoncini,et al.  Convergence Analysis of Projection Methods for the Numerical Solution of Large Lyapunov Equations , 2009, SIAM J. Numer. Anal..

[18]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[19]  Ludmil T. Zikatanov,et al.  Two‐sided bounds on the convergence rate of two‐level methods , 2008, Numer. Linear Algebra Appl..

[20]  Ludmil T. Zikatanov,et al.  A sharp convergence estimate for the method of subspace corrections for singular systems of equations , 2007, Math. Comput..

[21]  Ludmil T. Zikatanov,et al.  On two‐grid convergence estimates , 2005, Numer. Linear Algebra Appl..

[22]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..

[23]  Panayot S. Vassilevski,et al.  On Generalizing the Algebraic Multigrid Framework , 2004, SIAM J. Numer. Anal..

[24]  Tony F. Chan,et al.  An Energy-minimizing Interpolation for Robust Multigrid Methods , 1999, SIAM J. Sci. Comput..

[25]  Gert Lube,et al.  A Non-Overlapping Domain Decomposition Method for the Advection-Diffusion Problem , 1999, Computing.

[26]  Marian Brezina,et al.  Convergence of algebraic multigrid based on smoothed aggregation , 1998, Numerische Mathematik.

[27]  Marian Brezina,et al.  Energy Optimization of Algebraic Multigrid Bases , 1998, Computing.

[28]  Stephen F. McCormick,et al.  Multigrid Methods for Variational Problems: General Theory for the V-Cycle , 1985 .

[29]  S. F. McCormick,et al.  Multigrid Methods for Variational Problems: Further Results , 1984 .

[30]  William F. Moss,et al.  Decay rates for inverses of band matrices , 1984 .

[31]  DavioMarc Kronecker products and shuffle algebra , 1981 .

[32]  Marc Davio,et al.  Kronecker products and shuffle algebra , 1981, IEEE Transactions on Computers.

[33]  W. Marsden I and J , 2012 .

[34]  L. Zikatanov,et al.  Algebraic Multigrid Methods Based on Compatible Relaxation and Energy Minimization , 2007 .

[35]  A. Brandt General highly accurate algebraic coarsening. , 2000 .

[36]  Marlis Hochbruck,et al.  Preconditioned Krylov Subspace Methods for Lyapunov Matrix Equations , 1995, SIAM J. Matrix Anal. Appl..