A unified particle system framework for multi-phase, multi-material visual simulations

We introduce a unified particle framework which integrates the phase-field method with multi-material simulation to allow modeling of both liquids and solids, as well as phase transitions between them. A simple elasto-plastic model is used to capture the behavior of various kinds of solids, including deformable bodies, granular materials, and cohesive soils. States of matter or phases, particularly liquids and solids, are modeled using the non-conservative Allen-Cahn equation. In contrast, materials---made of different substances---are advected by the conservative Cahn-Hilliard equation. The distributions of phases and materials are represented by a phase variable and a concentration variable, respectively, allowing us to represent commonly observed fluid-solid interactions. Our multi-phase, multi-material system is governed by a unified Helmholtz free energy density. This framework provides the first method in computer graphics capable of modeling a continuous interface between phases. It is versatile and can be readily used in many scenarios that are challenging to simulate. Examples are provided to demonstrate the capabilities and effectiveness of this approach.

[1]  Matthias Teschner,et al.  Boundary Handling and Adaptive Time-stepping for PCISPH , 2010, VRIPHYS.

[2]  Nadia Magnenat-Thalmann,et al.  Stable and Fast Fluid–Solid Coupling for Incompressible SPH , 2015, Comput. Graph. Forum.

[3]  Philip Dutré,et al.  Mixing Fluids and Granular Materials , 2009, Comput. Graph. Forum.

[4]  Wei Chen,et al.  Numerical Simulations for Large Deformation of Granular Materials Using Smoothed Particle Hydrodynamics Method , 2012 .

[5]  Gang Wang,et al.  Numerical Analysis of Piles in Elasto-plastic Soils , 2004 .

[6]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[7]  S. Allen,et al.  Ground state structures in ordered B.C.C. ternary alloys with second-neighbor interactions , 1992 .

[8]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[9]  H. Huppert,et al.  Axisymmetric collapses of granular columns , 2004, Journal of Fluid Mechanics.

[10]  Adam W. Bargteil,et al.  A point-based method for animating elastoplastic solids , 2009, SCA '09.

[11]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[12]  Ralph R. Martin,et al.  Versatile interactions at interfaces for SPH-based simulations , 2016, Symposium on Computer Animation.

[13]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[14]  Ming C. Lin,et al.  Free-flowing granular materials with two-way solid coupling , 2010, ACM Trans. Graph..

[15]  Rachan Tananuchittikul Particle-Based Simulation of Granular Materials on GPUs , 2011 .

[16]  Chenfanfu Jiang,et al.  Multi-species simulation of porous sand and water mixtures , 2017, ACM Trans. Graph..

[17]  Renato Pajarola,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) , 2022 .

[18]  Philip Dutré,et al.  Porous flow in particle-based fluid simulations , 2008, ACM Trans. Graph..

[19]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[20]  J. Monaghan On the problem of penetration in particle methods , 1989 .

[21]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[22]  J. Monaghan SPH without a Tensile Instability , 2000 .

[23]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[24]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[25]  Harald Garcke,et al.  A Diffuse Interface Model for Alloys with Multiple Components and Phases , 2004, SIAM J. Appl. Math..

[26]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[27]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[28]  Wai-Fah Chen,et al.  Nonlinear analysis in soil mechanics : theory and implementation , 1990 .

[29]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[30]  Matthias Teschner,et al.  High-Resolution Simulation of Granular Material with SPH , 2012, VRIPHYS.

[31]  Bo Ren,et al.  A simple approach for bubble modelling from multiphase fluid simulation , 2015, Computational Visual Media.

[32]  Qunsheng Peng,et al.  Realistic simulation of mixing fluids , 2011, The Visual Computer.

[33]  Ben Jones,et al.  Deformation embedding for point-based elastoplastic simulation , 2014, TOGS.

[34]  Matthias Teschner,et al.  An implicit viscosity formulation for SPH fluids , 2015, ACM Trans. Graph..

[35]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions , 2007, Comput. Animat. Virtual Worlds.

[36]  Bo Ren,et al.  Fast multiple-fluid simulation using Helmholtz free energy , 2015, ACM Trans. Graph..

[37]  Ha H. Bui,et al.  Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model , 2008 .

[38]  Florence Bertails-Descoubes,et al.  A semi-implicit material point method for the continuum simulation of granular materials , 2016, ACM Trans. Graph..

[39]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[40]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[41]  Enhua Wu,et al.  A particle-based method for viscoelastic fluids animation , 2009, VRST '09.

[42]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[43]  Shi-Min Hu,et al.  Multiple-Fluid SPH Simulation Using a Mixture Model , 2014, ACM Trans. Graph..

[44]  Rui Wang,et al.  Implicit Integration for Particle‐based Simulation of Elasto‐Plastic Solids , 2013, Comput. Graph. Forum.

[45]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[46]  Miguel A. Otaduy,et al.  SPH granular flow with friction and cohesion , 2011, SCA '11.

[47]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[48]  Markus H. Gross,et al.  Eurographics Symposium on Point-based Graphics (2005) a Unified Lagrangian Approach to Solid-fluid Animation , 2022 .

[49]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[50]  Ralph R. Martin,et al.  Pairwise Force SPH Model for Real-Time Multi-Interaction Applications , 2017, IEEE Transactions on Visualization and Computer Graphics.

[51]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[52]  Matthias Teschner,et al.  Corotated SPH for Deformable Solids , 2009, NPH.

[53]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[54]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions: Research Articles , 2007 .

[55]  Jian-Jun Zhang,et al.  A Particle-based Dissolution Model using Chemical Collision Energy , 2015, GRAPP.

[56]  Ralph R. Martin,et al.  Multiphase SPH simulation for interactive fluids and solids , 2016, ACM Trans. Graph..

[57]  Sung Yong Shin,et al.  A unified handling of immiscible and miscible fluids , 2008, Comput. Animat. Virtual Worlds.

[58]  Helmut Schweiger,et al.  On the use of drucker-prager failure criteria for earth pressure problems , 1994 .

[59]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..