A decoding algorithm for LDPC codes over erasure channels with sporadic errors

An efficient decoding algorithm for low-density parity-check (LDPC) codes on erasure channels with sporadic errors (i.e., binary error-and-erasure channels with error probability much smaller than the erasure probability) is proposed and its performance analyzed. A general single-error multiple-erasure (SEME) decoding algorithm is first described, which may be in principle used with any binary linear block code. The algorithm is optimum whenever the non-erased part of the received word is affected by at most one error, and is capable of performing error detection of multiple errors. An upper bound on the average block error probability under SEME decoding is derived for the linear random code ensemble. The bound is tight and easy to implement. The algorithm is then adapted to LDPC codes, resulting in a simple modification to a previously proposed efficient maximum likelihood LDPC erasure decoder which exploits the parity-check matrix sparseness. Numerical results reveal that LDPC codes under efficient SEME decoding can closely approach the average performance of random codes.

[1]  Marco Chiani,et al.  Pivoting Algorithms for Maximum Likelihood Decoding of LDPC Codes over Erasure Channels , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[2]  Lizhong Zheng,et al.  Error-and-Erasure Decoding for Block Codes with Feedback , 2008, ISIT.

[3]  Rüdiger L. Urbanke,et al.  Capacity-achieving ensembles for the binary erasure channel with bounded complexity , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[4]  Marco Chiani,et al.  Performance versus overhead for fountain codes over Fq , 2010, IEEE Communications Letters.

[5]  Vincent Roca,et al.  Erasure Codes with a Banded Structure for Hybrid Iterative-ML Decoding , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[6]  J. L. Massey,et al.  Capacity, Cutoff Rate, and Coding for a Direct-Detection Optical Channel , 1981, IEEE Trans. Commun..

[7]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[8]  Noga Alon,et al.  A linear time erasure-resilient code with nearly optimal recovery , 1996, IEEE Trans. Inf. Theory.

[9]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[10]  Khaled A. S. Abdel-Ghaffar,et al.  Separating erasures from errors for decoding , 2008, 2008 IEEE International Symposium on Information Theory.

[11]  Andrew M. Odlyzko,et al.  Solving Large Sparse Linear Systems over Finite Fields , 1990, CRYPTO.

[12]  Marco Chiani,et al.  Generalized IRA Erasure Correcting Codes for Hybrid Iterative/Maximum Likelihood Decoding , 2008, IEEE Communications Letters.

[13]  Marco Chiani,et al.  Simple reconfigurable low-density parity-check codes , 2005, IEEE Communications Letters.

[14]  Luigi Rizzo,et al.  Effective erasure codes for reliable computer communication protocols , 1997, CCRV.

[15]  G. Landsberg Ueber eine Anzahlbestimmung und eine damit zusammenhängende Reihe. , 2022 .

[16]  Oliver M. Collins,et al.  A Comparison of Known Codes, Random Codes, and the Best Codes , 1998, IEEE Trans. Inf. Theory.

[17]  Jack K. Wolf,et al.  An exact evaluation of the probability of undetected error for certain shortened binary CRC codes , 1988, MILCOM 88, 21st Century Military Communications - What's Possible?'. Conference record. Military Communications Conference.

[18]  Andrea Montanari,et al.  Maxwell Construction: The Hidden Bridge Between Iterative and Maximum a Posteriori Decoding , 2005, IEEE Transactions on Information Theory.

[19]  Faramarz Fekri,et al.  On decoding of low-density parity-check codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[20]  G. David Forney,et al.  Exponential error bounds for erasure, list, and decision feedback schemes , 1968, IEEE Trans. Inf. Theory.

[21]  Lizhong Zheng,et al.  Errors-and-Erasures Decoding for Block Codes With Feedback , 2008, IEEE Transactions on Information Theory.

[22]  Robert J. McEliece,et al.  Practical codes for photon communication , 1981, IEEE Trans. Inf. Theory.

[23]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[24]  David Burshtein,et al.  Efficient maximum-likelihood decoding of LDPC codes over the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[25]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[26]  Robert G. Gallager,et al.  New exponential upper bounds to error and erasure probabilities , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[27]  L. Litwin,et al.  Error control coding , 2001 .

[28]  Marco Chiani,et al.  Construction of Near-Optimum Burst Erasure Correcting Low-Density Parity-Check Codes , 2008, IEEE Transactions on Communications.

[29]  E.R. Berlekamp,et al.  The technology of error-correcting codes , 1980, Proceedings of the IEEE.