Superellipsoid-based, Real Symmetric Traceless Tensor Glyphs Motivated by Nematic Liquid Crystal Alignment Visualization

A glyph-based method for visualizing the nematic liquid crystal alignment tensor is introduced. Unlike previous approaches, the glyph is based upon physically-linked metrics, not offsets of the eigenvalues. These metrics, combined with a set of superellipsoid shapes, communicate both the strength of the crystal's uniaxial alignment and the amount of biaxiality. With small modifications, our approach can visualize any real symmetric traceless tensor

[1]  David H. Laidlaw,et al.  Visualization of Topological Defects in Nematic Liquid Crystals Using Streamtubes, Streamsurfaces and Ellipsoids , 2004, IEEE Visualization 2004.

[2]  M. Bastin,et al.  Visualization and analysis of white matter structural asymmetry in diffusion tensor MRI data , 2004, Magnetic resonance in medicine.

[3]  S. Hess,et al.  Alignment tensor versus director: Description of defects in nematic liquid crystals. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Philip J. Bos,et al.  Comparisons of the vector method and tensor method for simulating liquid crystal devices , 2001 .

[5]  Gordon Kindlmann,et al.  Superquadric tensor glyphs , 2004, VISSYM'04.

[6]  Robert J. Low Measuring order and biaxiality , 2002 .

[7]  Barr,et al.  Superquadrics and Angle-Preserving Transformations , 1981, IEEE Computer Graphics and Applications.

[8]  Peter J. Collings,et al.  Liquid Crystals: Nature's Delicate Phase of Matter , 1990 .

[9]  David S. Ebert,et al.  Minimally Immersive Flow Visualization , 2001, IEEE Trans. Vis. Comput. Graph..

[10]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[11]  Alejandro D. Rey,et al.  Orientation mode selection mechanisms for sheared nematic liquid crystalline materials , 1998 .

[12]  David S. Ebert,et al.  Using shape to visualize multivariate data , 1999, NPIVM '99.

[13]  Alex T. Pang,et al.  2D asymmetric tensor analysis , 2005, VIS 05. IEEE Visualization, 2005..

[14]  David S. Ebert,et al.  Data visualization using automatic perceptually motivated shapes , 1998, Electronic Imaging.

[15]  SONG ZHANG,et al.  Diffusion Tensor MRI Visualization , 2005, The Visualization Handbook.

[16]  M. Gregory Forest,et al.  Methods for the exact construction of mesoscale spatial structures in liquid crystal polymers , 2001 .

[17]  D. Dunmur,et al.  Distribution Functions and Order Parameters , 2002 .

[18]  Ketan Mehta,et al.  Detection and Visualization of Defects in 3D Unstructured Models of Nematic Liquid Crystals , 2006, IEEE Transactions on Visualization and Computer Graphics.

[19]  David H. Laidlaw,et al.  Techniques for the Visualization of Topological Defect Behavior in Nematic Liquid Crystals , 2006, IEEE Transactions on Visualization and Computer Graphics.

[20]  Yang-Ming Zhu,et al.  A vector grouping algorithm for liquid crystal tensor field visualization , 2002 .

[21]  Gerik Scheuermann,et al.  HOT-lines: tracking lines in higher order tensor fields , 2005, VIS 05. IEEE Visualization, 2005..

[22]  David S. Ebert,et al.  Procedural Shape Generation for Multi-dimensional Data Visualization , 1999, VisSym.

[23]  G. R. Luckhurst,et al.  The Molecular physics of liquid crystals , 1979 .

[24]  Alan H. Windle,et al.  A numerical technique for predicting microstructure in liquid crystalline polymers , 1997 .