On the use of hierarchical prediction structures for efficient summary generation of H.264/AVC bitstreams

Video summarization refers to an important set of abstraction techniques aimed to provide a compact representation of the video essential to effectively browse and retrieve video content from multimedia repositories. Most of these video summarization techniques, such as image storyboards, video skims and fast previews, are based on selecting some frames or segments. H.264/AVC has become a widely accepted coding standard and is expected that many of the content will be available in this format soon. This paper proposes a generic model of video summarization especially suitable for generating summaries of H.264/AVC bitstreams in a highly efficient manner, using the concept of temporal scalability via hierarchical prediction structures. Along with the model, specific examples of summarization techniques are given to prove the utility of the model.

[1]  Takeo Kanade,et al.  Video skimming and characterization through the combination of image and language understanding , 1998, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database.

[2]  Jun Xin,et al.  Video Adaptation : Concepts , Technologies , and Open Issues , .

[3]  Ajay Divakaran,et al.  Constant pace skimming and temporal sub-sampling of video using motion activity , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[4]  Yelena Yesha,et al.  Keyframe-based video summarization using Delaunay clustering , 2006, International Journal on Digital Libraries.

[5]  Heiko Schwarz,et al.  Analysis of Hierarchical B Pictures and MCTF , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[6]  Ajay Luthra,et al.  Overview of the H.264/AVC video coding standard , 2003, IEEE Trans. Circuits Syst. Video Technol..

[7]  Chong-Wah Ngo,et al.  Automatic video summarization by graph modeling , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[8]  Liang-Tien Chia,et al.  MPEG-21 digital item adaptation by applying perceived motion energy to H.264 video , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[9]  Lie Lu,et al.  A generic framework of user attention model and its application in video summarization , 2005, IEEE Trans. Multim..

[10]  Gary Marchionini,et al.  How fast is too fast? evaluating fast forward surrogates for digital video , 2003, 2003 Joint Conference on Digital Libraries, 2003. Proceedings..

[11]  Wolfgang Effelsberg,et al.  Abstracting Digital Movies Automatically , 1996, J. Vis. Commun. Image Represent..

[12]  Avideh Zakhor,et al.  Applications of Video-Content Analysis and Retrieval , 2002, IEEE Multim..

[13]  Sang Uk Lee,et al.  Efficient video indexing scheme for content-based retrieval , 1999, IEEE Trans. Circuits Syst. Video Technol..

[14]  Ahmed K. Elmagarmid,et al.  InsightVideo: toward hierarchical video content organization for efficient browsing, summarization and retrieval , 2005, IEEE Transactions on Multimedia.

[15]  R. Venkatesh Babu,et al.  Video object segmentation: a compressed domain approach , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[16]  D. Marpe,et al.  The H.264/MPEG4 advanced video coding standard and its applications , 2006, IEEE Communications Magazine.

[17]  Chia-Hung Yeh,et al.  Techniques for movie content analysis and skimming: tutorial and overview on video abstraction techniques , 2006, IEEE Signal Processing Magazine.

[18]  Heiko Schwarz,et al.  Overview of the Scalable Video Coding Extension of the H.264/AVC Standard , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[19]  K. Rijkse,et al.  H.263: video coding for low-bit-rate communication , 1996, IEEE Commun. Mag..

[20]  Wesley De Neve,et al.  XML-based customization along the scalability axes of H.264/AVC scalable video coding , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[21]  Ajay Divakaran,et al.  MPEG-7 visual motion descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[22]  Gary Marchionini,et al.  The Open Video Digital Library: A Möbius strip of research and practice , 2006, J. Assoc. Inf. Sci. Technol..

[23]  Gary Marchionini,et al.  The Open Video Digital Library: A Möbius strip of research and practice , 2006 .

[24]  Boon-Lock Yeo,et al.  Video visualization for compact presentation and fast browsing of pictorial content , 1997, IEEE Trans. Circuits Syst. Video Technol..

[25]  Sethuraman Panchanathan,et al.  Adaptive Video Transmission Schemes Using MPEG-7 Motion Intensity Descriptor , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[26]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[27]  Aggelos K. Katsaggelos,et al.  Rate-distortion optimal video summary generation , 2005, IEEE Transactions on Image Processing.

[28]  Luis Herranz,et al.  Integrating semantic analysis and scalable video coding for efficient content-based adaptation , 2007, Multimedia Systems.

[29]  Christian Timmerer,et al.  Bitstream syntax description-based adaptation in streaming and constrained environments , 2005, IEEE Transactions on Multimedia.

[30]  Anthony Vetro,et al.  Extensions of H.264/AVC for Multiview Video Compression , 2006, 2006 International Conference on Image Processing.

[31]  Yueting Zhuang,et al.  Adaptive key frame extraction using unsupervised clustering , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[32]  DimitrovaNevenka,et al.  Applications of Video-Content Analysis and Retrieval , 2002 .