Linear and Nonlinear Simulations Using the EUTERPE Gyrokinetic Code

In this paper, we report on simulations that have recently been carried out using the EUTERPE gyrokinetic code. The scaling of the code has been studied up to 20 000 processing elements. Linear and nonlinear simulations of ion temperature-gradient instabilities have been carried out in screw-pinch geometry, and the results are compared with those previously obtained using the TORB code, finding a good agreement. The influence of a finite β on the growth rates of instabilities and on the zonal flows in a screw-pinch has also been studied. The results are compared with previous ones.

[1]  Hideo Sugama,et al.  Kinetic simulation of a quasisteady state in collisionless ion temperature gradient driven turbulence , 2002 .

[2]  S. Parker,et al.  A fully nonlinear characteristic method for gyrokinetic simulation , 1993 .

[3]  Roman Hatzky,et al.  Domain cloning for a particle-in-cell (PIC) code on a cluster of symmetric-multiprocessor (SMP) computers , 2006, Parallel Comput..

[4]  Parker,et al.  Gyrokinetic simulation of ion temperature gradient driven turbulence in 3D toroidal geometry. , 1993, Physical review letters.

[5]  X. Garbet,et al.  Global full-f gyrokinetic simulations of plasma turbulence , 2007 .

[6]  W. A. Cooper,et al.  Global linear gyrokinetic simulations in quasi-symmetric configurations , 2001 .

[7]  R. Kleiber,et al.  Global linear gyrokinetic simulations for stellarator and axisymmetric equilibria. Invited paper , 2006 .

[8]  Williams,et al.  Scalings of Ion-Temperature-Gradient-Driven Anomalous Transport in Tokamaks. , 1996, Physical review letters.

[9]  G. Falchetto,et al.  Global-gyrokinetic study of finite β effects on linear microinstabilities , 2003 .

[10]  F. Jenko,et al.  Electron temperature gradient turbulence. , 2000, Physical review letters.

[11]  R. E. Waltz,et al.  An Eulerian gyrokinetic-Maxwell solver , 2003 .

[12]  Laurent Villard,et al.  A global collisionless PIC code in magnetic coordinates , 2007, Comput. Phys. Commun..

[13]  K. Appert,et al.  Global linear gyrokinetic PIC simulations in 3D magnetic configurations , 2000 .

[14]  Taina Kurki-Suonio,et al.  Paritcle simulation of the neoclassical plasmas , 2001 .

[15]  J. C. Whitson,et al.  Steepest‐descent moment method for three‐dimensional magnetohydrodynamic equilibria , 1983 .

[16]  Laurent Villard,et al.  Gyrokinetic global three-dimensional simulations of linear ion-temperature-gradient modes in Wendelstein 7-X , 2004 .

[17]  Laurent Villard,et al.  New conservative gyrokinetic full-f Vlasov code and its comparison to gyrokinetic δf particle-in-cell code , 2007, J. Comput. Phys..

[18]  R. Hatzky,et al.  Energy conservation in a nonlinear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven modes in θ-pinch geometry , 2002 .

[19]  S. Sorge Investigation of ITG turbulence in cylinder geometry within a gyrokinetic global PIC simulation: influence of zonal flows and a magnetic well , 2004 .

[20]  John M. Dawson,et al.  Fluctuation-induced heat transport results from a large global 3D toroidal particle simulation model , 1996 .

[21]  Laurent Villard,et al.  Nonlinear low noise particle-in-cell simulations of electron temperature gradient driven turbulence , 2007 .

[22]  T. Hahm,et al.  Size Scaling of Turbulent Transport in Magnetically Confined Plasmas , 2002 .

[23]  Roman Hatzky,et al.  Gyrokinetic global electrostatic ion-temperature-gradient modes in finite β equilibria of Wendelstein 7-X , 2005 .

[24]  W. Dorland,et al.  Discrete Particle Noise in Particle-in-Cell Simulations of Plasma Microturbulence , 2005 .

[25]  Shinji Tokuda,et al.  Global gyrokinetic simulation of ion temperature gradient driven turbulence in plasmas using a canonical Maxwellian distribution , 2003 .

[26]  Alain J. Brizard,et al.  Foundations of Nonlinear Gyrokinetic Theory , 2007 .

[27]  T. S. Hahm,et al.  Nonlinear gyrokinetic equations for tokamak microturbulence , 1988 .