Optical observations of thunderstorms from the International Space Station: recent results and perspectives

[1]  S. Dietrich,et al.  A Joint LINET and ISS-LIS View of Lightning Distribution over the Mt. Cimone Area within the GAMMA-FLASH Program , 2022, Remote. Sens..

[2]  H. Huntrieser,et al.  Meteorological Conditions Associated with Lightning Ignited Fires and Long-Continuing-Current Lightning in Arizona, New Mexico and Florida , 2022, Fire.

[3]  N. Østgaard,et al.  Multi‐Pulse Corona Discharges in Thunderclouds Observed in Optical and Radio Bands , 2022, Geophysical research letters.

[4]  Yanan Zhu,et al.  Upgrades of the Earth Networks Total Lightning Network in 2021 , 2022, Remote. Sens..

[5]  Yijun Zhang,et al.  Advances in Lightning Monitoring and Location Technology Research in China , 2022, Remote. Sens..

[6]  C. Jones,et al.  Evaluating the influence of deep convection on tropopause thermodynamics and lower stratospheric water vapor: A RELAMPAGO case study using the WRF model , 2021, Atmospheric Research.

[7]  A. Steiner,et al.  Observing the climate impact of large wildfires on stratospheric temperature , 2021, Scientific Reports.

[8]  T. Erbertseder,et al.  Quantification of lightning-produced NOx over the Pyrenees and the Ebro Valley by using different TROPOMI-NO2 and cloud research products , 2021 .

[9]  P. Jöckel,et al.  A parameterization of Long-Continuing-Current (LCC) lightning in the lightning submodel LNOX (version 3.0) of the Modular Earth Submodel System (MESSy, version 2.54) , 2021, Geoscientific Model Development.

[10]  D. Mach,et al.  A technique for determining three-dimensional storm cloud top locations using stereo optical lightning pulses observed from orbit , 2021, Journal of Atmospheric and Oceanic Technology.

[11]  N. Østgaard,et al.  Global Frequency and Geographical Distribution of Nighttime Streamer Corona Discharges (BLUEs) in Thunderclouds , 2021, Geophysical Research Letters.

[12]  Jessica B. Smith Convective hydration of the stratosphere. , 2021, Science.

[13]  G. Heymsfield,et al.  Hydraulic jump dynamics above supercell thunderstorms , 2021, Science.

[14]  A. Protat,et al.  Analysis of Blue Corona Discharges at the Top of Tropical Thunderstorm Clouds in Different Phases of Convection , 2021, Geophysical research letters.

[15]  Dongjie Cao,et al.  Lightning Activity Observed by the FengYun-4A Lightning Mapping Imager , 2021, Remote. Sens..

[16]  D. Mach,et al.  The Illumination of Thunderclouds by Lightning: 3. Retrieving Optical Source Altitude , 2021, Earth and space science.

[17]  J. Kaplan,et al.  The WGLC global gridded lightning climatology and timeseries , 2021, Earth System Science Data.

[18]  H. Morrison,et al.  How Does LCL Height Influence Deep Convective Updraft Width? , 2021, Geophysical Research Letters.

[19]  F. J. Pérez-Invernón,et al.  A review of the impact of transient luminous events on the atmospheric chemistry: Past, present, and future , 2021 .

[20]  N. Østgaard,et al.  Blue Flashes as Counterparts to Narrow Bipolar Events: The Optical Signal of Shallow In‐Cloud Discharges , 2021, Journal of Geophysical Research: Atmospheres.

[21]  I. Koren,et al.  Record-breaking aerosol levels explained by smoke injection into the stratosphere , 2021, Science.

[22]  J. Montanyà,et al.  A Simultaneous Observation of Lightning by ASIM, Colombia‐Lightning Mapping Array, GLM, and ISS‐LIS , 2021, Journal of Geophysical Research: Atmospheres.

[23]  R. Stuhlmann,et al.  Meteosat Third Generation (MTG): Continuation and Innovation of Observations from Geostationary Orbit , 2021, Bulletin of the American Meteorological Society.

[24]  K. Virts,et al.  Dual Geostationary Lightning Mapper Observations , 2021 .

[25]  N. Østgaard,et al.  Observation of the onset of a blue jet into the stratosphere , 2021, Nature.

[26]  A. Jacobson,et al.  Lightning in the Arctic , 2020, Geophysical Research Letters.

[27]  D. J. Ruiz,et al.  A comprehensive quantification of global nitrous oxide sources and sinks , 2020, Nature.

[28]  J. Montanyà,et al.  Comparison of High‐Speed Optical Observations of a Lightning Flash From Space and the Ground , 2020, Earth and Space Science.

[29]  S. Rutledge,et al.  Evaluating Geostationary Lightning Mapper Flash Rates Within Intense Convective Storms , 2020, Journal of Geophysical Research: Atmospheres.

[30]  J. Walsh,et al.  Lightning Variability in Dynamically Downscaled Simulations of Alaska’s Present and Future Summer Climate , 2020 .

[31]  G. Cooray,et al.  Modeling Compact Intracloud Discharge (CID) as a Streamer Burst , 2020, Atmosphere.

[32]  M. Maskey,et al.  Three Years of the Lightning Imaging Sensor Onboard the International Space Station: Expanded Global Coverage and Enhanced Applications , 2020, Journal of Geophysical Research: Atmospheres.

[33]  R. Bradstock,et al.  Unprecedented burn area of Australian mega forest fires , 2020, Nature Climate Change.

[34]  Alexis K.H. Lau,et al.  New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS) , 2020, Bulletin of the American Meteorological Society.

[35]  N. Krotkov,et al.  Midlatitude Lightning NOx Production Efficiency Inferred From OMI and WWLLN Data , 2019, Journal of Geophysical Research: Atmospheres.

[36]  Francisco J. Gordillo-Vázquez,et al.  Comparison of Six Lightning Parameterizations in CAM5 and the Impact on Global Atmospheric Chemistry , 2019, Earth and Space Science.

[37]  J. Dwyer,et al.  Understanding the Radio Spectrum of Thunderstorm Narrow Bipolar Events , 2019, Journal of Geophysical Research: Atmospheres.

[38]  G. Lin,et al.  What Drives the Life Cycle of Tropical Anvil Clouds? , 2019, Journal of Advances in Modeling Earth Systems.

[39]  S. Grabarnik,et al.  Sentinel 4 UVN: a geostationary imaging UVN spectrometer for air quality monitoring: performance, measurement modes and model philosophy , 2019, International Conference on Space Optics.

[40]  William J. Koshak,et al.  Evaluation of the Performance Characteristics of the Lightning Imaging Sensor , 2019, Journal of Atmospheric and Oceanic Technology.

[41]  Søren Forchhammer,et al.  The Modular Multispectral Imaging Array (MMIA) of the ASIM Payload on the International Space Station , 2019 .

[42]  H. Christian,et al.  Triggered Lightning Spectroscopy: 2. A Quantitative Analysis , 2019, Journal of Geophysical Research: Atmospheres.

[43]  Nikolai Østgaard,et al.  The ASIM Mission on the International Space Station , 2019, Space Science Reviews.

[44]  N. Krotkov,et al.  Lightning NOx Production in the Tropics as Determined Using OMI NO2 Retrievals and WWLLN Stroke Data , 2018, Journal of Geophysical Research: Atmospheres.

[45]  P. Haynes,et al.  The Mechanisms Leading to a Stratospheric Hydration by Overshooting Convection , 2018, Journal of the Atmospheric Sciences.

[46]  S. J. Weiss,et al.  An Evaluation of Paired Regional/Convection-Allowing Forecast Vertical Thermodynamic Profiles in Warm-Season, Thunderstorm-Supporting Environments , 2018, Weather and Forecasting.

[47]  Robert H. Holzworth,et al.  Lightning: A New Essential Climate Variable , 2018, Eos.

[48]  Helin Zhou,et al.  Observations of Blue Discharges Associated With Negative Narrow Bipolar Events in Active Deep Convection , 2018 .

[49]  A. Blyth,et al.  A projected decrease in lightning under climate change , 2018, Nature Climate Change.

[50]  J. Comstock,et al.  Substantial convection and precipitation enhancements by ultrafine aerosol particles , 2018, Science.

[51]  Rodrigo E. Bürgesser,et al.  Assessment of the World Wide Lightning Location Network (WWLLN) detection efficiency by comparison to the Lightning Imaging Sensor (LIS) , 2017 .

[52]  Zhiqing Zhang,et al.  Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4 , 2017 .

[53]  J. Lamarque,et al.  Wildfire air pollution hazard during the 21st century , 2017 .

[54]  Scott D. Rudlosky,et al.  GLD360 Performance Relative to TRMM LIS , 2017 .

[55]  T. Neubert,et al.  Profuse activity of blue electrical discharges at the tops of thunderstorms , 2017 .

[56]  Yang Zhang,et al.  Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms , 2016, Nature Communications.

[57]  J. Peischl,et al.  Injection of lightning‐produced NOx, water vapor, wildfire emissions, and stratospheric air to the UT/LS as observed from DC3 measurements , 2015 .

[58]  Richard J. Blakeslee,et al.  Where Are the Lightning Hotspots on Earth , 2015 .

[59]  Rue-Ron Hsu,et al.  The blue luminous events observed by ISUAL payload on board FORMOSAT‐2 satellite , 2015 .

[60]  K. Cummins,et al.  Variability of CONUS Lightning in 2003–12 and Associated Impacts , 2015 .

[61]  M. Chin,et al.  Global observations of aerosol‐cloud‐precipitation‐climate interactions , 2014 .

[62]  J. Peischl,et al.  Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air , 2014 .

[63]  J. Molinari,et al.  Projected increase in lightning strikes in the United States due to global warming , 2014, Science.

[64]  A. Weinheimer,et al.  Convective transport of water vapor into the lower stratosphere observed during double‐tropopause events , 2014 .

[65]  P. Braesicke,et al.  Lightning NO x , a key chemistry–climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity , 2014 .

[66]  J. Dwyer,et al.  The physics of lightning , 2014 .

[67]  S. Sherwood,et al.  Climate Effects of Aerosol-Cloud Interactions , 2014, Science.

[68]  D P Edwards,et al.  Tropospheric emissions: monitoring of pollution (TEMPO) , 2012, Optics & Photonics - Optical Engineering + Applications.

[69]  William J. Koshak,et al.  The GOES-R GeoStationary Lightning Mapper (GLM) , 2012 .

[70]  A. Ravishankara,et al.  Stratospheric ozone depletion due to nitrous oxide: influences of other gases , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[71]  Ting Wu,et al.  Discharge height of lightning narrow bipolar events , 2012 .

[72]  H. Edens Photographic and lightning mapping observations of a blue starter over a New Mexico thunderstorm , 2011 .

[73]  V. Grewe,et al.  Quantifying the contributions of individual NOx sources to the trend in ozone radiative forcing , 2011 .

[74]  S. Solomon,et al.  Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming , 2010, Science.

[75]  K. Lehtinen,et al.  Changes in the production rate of secondary aerosol particles in Central Europe in view of decreasing SO 2 emissions between 1996 and 2006 , 2009 .

[76]  N. Diffenbaugh,et al.  Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations , 2009 .

[77]  M. Dubey,et al.  Observation of enhanced ozone in an electrically active storm over Socorro, NM: Implications for ozone production from corona discharges , 2008 .

[78]  V. Mitev,et al.  Unprecedented evidence for deep convection hydrating the tropical stratosphere , 2008 .

[79]  Ulrich Schumann,et al.  The global lightning-induced nitrogen oxides source , 2007 .

[80]  Hugh J. Christian,et al.  TRMM observations of the global relationship between ice water content and lightning , 2005 .

[81]  P. Krehbiel,et al.  Accuracy of the Lightning Mapping Array , 2003 .

[82]  T. Neubert On Sprites and Their Exotic Kin , 2003, Science.

[83]  T. E. Nelson,et al.  Upward Electrical Discharges From Thunderstorm Tops , 2003 .

[84]  X. Tie,et al.  Impacts of anthropogenic and natural NOx sources over the U.S. on tropospheric chemistry , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[85]  P. Crutzen,et al.  Electrical discharge source for tropospheric ''ozone-rich transients'' , 2002 .

[86]  M. Šimek,et al.  Efficiency of ozone production by pulsed positive corona discharge in synthetic air , 2002 .

[87]  U. Inan,et al.  Electrical discharge from a thundercloud top to the lower ionosphere , 2002, Nature.

[88]  H. Christian Global Frequency and Distribution of Lightning as Observed From Space , 2001 .

[89]  Richard J. Blakeslee,et al.  Lightning Imaging Sensor (LIS) for the International Space Station , 2001 .

[90]  Steven J. Goodman,et al.  Regional Differences in Tropical Lightning Distributions , 2000 .

[91]  C. Price Evidence for a link between global lightning activity and upper tropospheric water vapour , 2000, Nature.

[92]  John M. Hall,et al.  The Lightning Imaging Sensor , 1999 .

[93]  R. Dickerson,et al.  Nitric oxide production by simulated lightning: Dependence on current, energy, and pressure , 1998 .

[94]  D. K. Brandvold,et al.  Field measurements of O3 and N2O produced from corona discharge , 1996 .

[95]  J. Holton,et al.  Stratosphere‐troposphere exchange , 1995 .

[96]  C. Kouveliotou,et al.  Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin , 1994, Science.

[97]  R. Rinker,et al.  Experimental study of the production of nitric oxide, nitrous oxide, and ozone in a simulated atmospheric corona , 1988 .

[98]  F. Shair,et al.  Production of O3, NO, and N2O in a Pulsed Discharge at 1 Atm , 1977 .

[99]  Maudood N. Khan,et al.  The NASA Lightning Nitrogen Oxides Model (LNOM): Application to air quality modeling , 2014 .

[100]  Richard J. Blakeslee,et al.  Gridded lightning climatology from TRMM-LIS and OTD: Dataset description , 2014 .

[101]  Gary Daines,et al.  Image of the Day , 2013 .

[102]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[103]  Milan Simek,et al.  Efficiency of ozone production by pulsed positive corona discharge in synthetic air , 2002 .