A new Legendre operational technique for delay fractional optimal control problems

In this paper, new operational matrices for shifted Legendre orthonormal polynomial are derived. This polynomial is used as a basis function for developing a new numerical technique for the delay fractional optimal control problem. The fractional integral is described in the Riemann–Liouville sense, while the fractional derivative is described in the Caputo sense. The operational matrix of fractional integrals is used together with the Lagrange multiplier method for the constrained extremum in order to minimize the performance index. The problem is then reduced to a problem consists of a system of easily solvable algebraic equations. Three numerical examples of different types of delay fractional optimal control problems are implemented with their approximate solutions for confirming the high accuracy and applicability of the proposed method.

[1]  D. Benson,et al.  Fractional calculus in hydrologic modeling: A numerical perspective. , 2013, Advances in water resources.

[2]  Hong Wang,et al.  Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations , 2014, J. Comput. Phys..

[3]  Isabel S. Jesus,et al.  Fractional control of heat diffusion systems , 2008 .

[4]  Alain Oustaloup,et al.  On a representation of fractional order systems: interests for the Initial Condition Problem , 2008 .

[5]  Xing Tao Wang,et al.  Numerical solutions of optimal control for time delay systems by hybrid of block-pulse functions and Legendre polynomials , 2007, Appl. Math. Comput..

[6]  Dumitru Baleanu,et al.  On shifted Jacobi spectral approximations for solving fractional differential equations , 2013, Appl. Math. Comput..

[7]  T. Hartley,et al.  Dynamics and Control of Initialized Fractional-Order Systems , 2002 .

[8]  S. S. Ezz-Eldien,et al.  A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems , 2014 .

[9]  E. H. Doha,et al.  A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations , 2016 .

[10]  Wichai Witayakiattilerd Optimal Regulation of Impulsive Fractional Differential Equation with Delay and Application to Nonlinear Fractional Heat Equation , 2013 .

[11]  E. Safaie,et al.  An approximate method for numerically solving multi-dimensional delay fractional optimal control problems by Bernstein polynomials , 2015 .

[12]  Stig Larsson,et al.  The continuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity , 2010, 1405.5405.

[13]  J. A. Tenreiro Machado,et al.  An Efficient Numerical Scheme for Solving Multi‐Dimensional Fractional Optimal Control Problems With a Quadratic Performance Index , 2015 .

[14]  T. Hartley,et al.  Application of Incomplete Gamma Functions to the Initialization of Fractional-Order Systems , 2007 .

[15]  M. Dehghan,et al.  The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems , 2011 .

[16]  Yiming Jiang,et al.  On a stochastic heat equation with first order fractional noises and applications to finance , 2012 .

[17]  Christophe Farges,et al.  Fractional systems state space description: some wrong ideas and proposed solutions , 2014 .

[18]  Nasser Sadati,et al.  Fopid Controller Design for Robust Performance Using Particle Swarm Optimization , 2007 .

[19]  S. Ikhdair,et al.  Bound states of spatially dependent mass Dirac equation with the Eckart potential including Coulomb tensor interaction , 2014, 1401.7142.

[20]  Dumitru Baleanu,et al.  An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems , 2015, Advances in Difference Equations.

[21]  E. Safaie,et al.  An approximation method for numerical solution of multi-dimensional feedback delay fractional optimal control problems by Bernstein polynomials , 2014 .

[22]  Siddhartha Sen,et al.  Fractional optimal control problems: a pseudo-state-space approach , 2011 .

[23]  E. J. Stone,et al.  Warm climates of the past—a lesson for the future? , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Dumitru Baleanu,et al.  Efficient generalized Laguerre-spectral methods for solving multi-term fractional differential equations on the half line , 2014 .

[25]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  S. Das,et al.  Functional Fractional Calculus for System Identification and Controls , 2007 .

[27]  David G. Wilson,et al.  2. Constrained Optimization , 2005 .

[28]  Zhiqiang Zhou,et al.  Convergence analysis of moving finite element methods for space fractional differential equations , 2014, J. Comput. Appl. Math..

[29]  Mehdi Dehghan,et al.  Numerical solution for a class of fractional convection–diffusion equations using the flatlet oblique multiwavelets , 2014 .

[30]  Ali H. Bhrawy,et al.  A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations , 2015, J. Comput. Phys..

[31]  G. Bohannan Analog Fractional Order Controller in Temperature and Motor Control Applications , 2008 .

[32]  M. Malek-Zavarei,et al.  Time-Delay Systems: Analysis, Optimization and Applications , 1987 .

[33]  Limin Sun,et al.  Free vibrations of a taut cable with a general viscoelastic damper modeled by fractional derivatives , 2015 .

[34]  Fawang Liu,et al.  Numerical techniques for the variable order time fractional diffusion equation , 2012, Appl. Math. Comput..

[35]  E. H. Doha,et al.  A NEW JACOBI OPERATIONAL MATRIX: AN APPLICATION FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS , 2012 .

[36]  R. Lewandowski,et al.  Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers , 2010 .

[37]  Yao-Lin Jiang,et al.  Waveform relaxation methods for fractional differential equations with the Caputo derivatives , 2013, J. Comput. Appl. Math..

[38]  J. Gregory,et al.  Constrained optimization in the calculus of variations and optimal control theory , 1992 .

[39]  Alain Oustaloup,et al.  How to impose physically coherent initial conditions to a fractional system , 2010 .

[40]  I. Podlubny,et al.  Modelling heat transfer in heterogeneous media using fractional calculus , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  Dumitru Baleanu,et al.  Higher order fractional variational optimal control problems with delayed arguments , 2011, Appl. Math. Comput..

[42]  H. S. Nik,et al.  A Bessel collocation method for solving fractional optimal control problems , 2015 .

[43]  Delfim F. M. Torres,et al.  A discrete method to solve fractional optimal control problems , 2014, 1403.5060.

[44]  Rahmat Darzi,et al.  Sumudu transform method for solving fractional differential equations and fractional Diffusion-Wave equation , 2013 .

[45]  Jovan Popović,et al.  Fractional model for pharmacokinetics of high dose methotrexate in children with acute lymphoblastic leukaemia , 2015, Commun. Nonlinear Sci. Numer. Simul..

[46]  Zoran D. Jelicic,et al.  Optimality conditions and a solution scheme for fractional optimal control problems , 2009 .

[47]  Blas M. Vinagre,et al.  A Fractional Adaptation Scheme for Lateral Control of an AGV , 2008 .

[48]  J. Tenreiro Machado,et al.  Efficient Legendre spectral tau algorithm for solving the two-sided space–time Caputo fractional advection–dispersion equation , 2016 .

[49]  Dumitru Baleanu,et al.  A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems , 2017 .

[50]  Carlo Cattani,et al.  Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations , 2014, Commun. Nonlinear Sci. Numer. Simul..

[51]  Alireza Nazemi,et al.  Solving fractional optimal control problems with fixed or free final states by Haar wavelet collocation method , 2016, IMA J. Math. Control. Inf..

[52]  Ali Vahidian Kamyad,et al.  Comments on “A discrete method to solve fractional optimal control problems” (Nonlinear Dyn, DOI:10.1007/s11071-014-1378-1) , 2017 .

[53]  Feng Chen,et al.  Maximum principle for optimal control problem of stochastic delay differential equations driven by fractional Brownian motions , 2016 .

[54]  Carl F. Lorenzo,et al.  Initialization in fractional order systems , 2001, 2001 European Control Conference (ECC).

[55]  Mo M. Jamshidi,et al.  A computational algorithm for large-scale nonlinear time-delay systems , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[56]  Dumitru Baleanu,et al.  A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations , 2015, J. Comput. Phys..

[57]  M. Hestenes Calculus of variations and optimal control theory , 1966 .

[58]  Ali H. Bhrawy,et al.  An Efficient Legendre Spectral Tau Matrix Formulation for Solving Fractional Subdiffusion and Reaction Subdiffusion Equations , 2015 .

[59]  Cécile Piret,et al.  A radial basis functions method for fractional diffusion equations , 2013, J. Comput. Phys..

[60]  Alain Oustaloup,et al.  State variables and transients of fractional order differential systems , 2012, Comput. Math. Appl..

[61]  Xing Tao Wang Numerical solutions of optimal control for linear time-varying systems with delays via hybrid functions , 2007, J. Frankl. Inst..

[62]  Carl F. Lorenzo,et al.  Initialization of Fractional Differential Equations: Theory and Application , 2007 .

[63]  Alain Oustaloup,et al.  Transients of fractional-order integrator and derivatives , 2012, Signal Image Video Process..

[64]  Dumitru Baleanu,et al.  Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices , 2013 .

[65]  Mortaza Gachpazan,et al.  Optimal control of time-varying linear delay systems based on the Bezier curves , 2014 .

[66]  Mehdi Dehghan,et al.  A method for obtaining the operational matrix of fractional Jacobi functions and applications , 2014 .