Network neuroscience

Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system.

[1]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[2]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[3]  M. Young,et al.  Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  T. Ideker,et al.  A new approach to decoding life: systems biology. , 2001, Annual review of genomics and human genetics.

[5]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[6]  Patrick C Phillips,et al.  Network thinking in ecology and evolution. , 2005, Trends in ecology & evolution.

[7]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[8]  Martin Rosvall,et al.  An information-theoretic framework for resolving community structure in complex networks , 2007, Proceedings of the National Academy of Sciences.

[9]  G. Gibson The environmental contribution to gene expression profiles , 2008, Nature Reviews Genetics.

[10]  Guy Karlebach,et al.  Modelling and analysis of gene regulatory networks , 2008, Nature Reviews Molecular Cell Biology.

[11]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[12]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[13]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[14]  A. Pentland,et al.  Life in the network: The coming age of computational social science: Science , 2009 .

[15]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[16]  Edward T. Bullmore,et al.  Network-based statistic: Identifying differences in brain networks , 2010, NeuroImage.

[17]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[18]  O. Sporns,et al.  Towards the virtual brain: network modeling of the intact and the damaged brain. , 2010, Archives italiennes de biologie.

[19]  Gorka Zamora-López,et al.  Cortical Hubs Form a Module for Multisensory Integration on Top of the Hierarchy of Cortical Networks , 2009, Front. Neuroinform..

[20]  A. Barabasi,et al.  Interactome Networks and Human Disease , 2011, Cell.

[21]  R. Segev,et al.  Sparse low-order interaction network underlies a highly correlated and learnable neural population code , 2011, Proceedings of the National Academy of Sciences.

[22]  Scott T. Grafton,et al.  Dynamic reconfiguration of human brain networks during learning , 2010, Proceedings of the National Academy of Sciences.

[23]  Desmond J. Higham,et al.  Network analysis detects changes in the contralesional hemisphere following stroke , 2011, NeuroImage.

[24]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[25]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[26]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[27]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[28]  D. Long Networks of the Brain , 2011 .

[29]  W. Denk,et al.  The Big and the Small: Challenges of Imaging the Brain’s Circuits , 2011, Science.

[30]  Roded Sharan,et al.  Gene Expression in the Rodent Brain is Associated with Its Regional Connectivity , 2011, PLoS Comput. Biol..

[31]  Leon French,et al.  Relationships between Gene Expression and Brain Wiring in the Adult Rodent Brain , 2011, PLoS Comput. Biol..

[32]  Karl J. Friston,et al.  Network discovery with DCM , 2011, NeuroImage.

[33]  M. Weiner,et al.  A Network Diffusion Model of Disease Progression in Dementia , 2012, Neuron.

[34]  Calvin J. Schneider,et al.  Toward a full-scale computational model of the rat dentate gyrus , 2012, Front. Neural Circuits.

[35]  Mark A Kramer,et al.  Distributed control in a mean-field cortical network model: implications for seizure suppression. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  D. Bassett,et al.  Functionalization of a protosynaptic gene expression network , 2012, Proceedings of the National Academy of Sciences.

[37]  Edward T. Bullmore,et al.  Connectomic Intermediate Phenotypes for Psychiatric Disorders , 2012, Front. Psychiatry.

[38]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[39]  Travis A. Jarrell,et al.  The Connectome of a Decision-Making Neural Network , 2012, Science.

[40]  Edward T. Bullmore,et al.  Schizophrenia, neuroimaging and connectomics , 2012, NeuroImage.

[41]  Edward T. Bullmore,et al.  On the use of correlation as a measure of network connectivity , 2012, NeuroImage.

[42]  O. Sporns,et al.  Network hubs in the human brain , 2013, Trends in Cognitive Sciences.

[43]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[44]  Mark D'Esposito,et al.  The effect of theta-burst TMS on cognitive control networks measured with resting state fMRI , 2013, Front. Syst. Neurosci..

[45]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[46]  Richard F. Betzel,et al.  Resting-brain functional connectivity predicted by analytic measures of network communication , 2013, Proceedings of the National Academy of Sciences.

[47]  Randall D. Beer,et al.  Connecting a Connectome to Behavior: An Ensemble of Neuroanatomical Models of C. elegans Klinotaxis , 2013, PLoS Comput. Biol..

[48]  Bin He,et al.  Neuromodulation for Brain Disorders: Challenges and Opportunities , 2013, IEEE Transactions on Biomedical Engineering.

[49]  I. Soltesz,et al.  Spatially clustered neuronal assemblies comprise the microstructure of synchrony in chronically epileptic networks , 2013, Proceedings of the National Academy of Sciences.

[50]  Michael Breakspear,et al.  Graph analysis of the human connectome: Promise, progress, and pitfalls , 2013, NeuroImage.

[51]  Cedric E. Ginestet,et al.  Cognitive relevance of the community structure of the human brain functional coactivation network , 2013, Proceedings of the National Academy of Sciences.

[52]  Henry Kennedy,et al.  Cortical High-Density Counterstream Architectures , 2013, Science.

[53]  Tom Heskes,et al.  Bayesian inference of structural brain networks , 2013, NeuroImage.

[54]  David A. Leopold,et al.  Dynamic functional connectivity: Promise, issues, and interpretations , 2013, NeuroImage.

[55]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[56]  Matthew F. Glasser,et al.  Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography , 2013, NeuroImage.

[57]  ShiNung Ching,et al.  Real-time Closed-loop Control in a Rodent Model of Medically Induced Coma Using Burst Suppression , 2013, Anesthesiology.

[58]  O. Sporns Contributions and challenges for network models in cognitive neuroscience , 2014, Nature Neuroscience.

[59]  Danielle S. Bassett,et al.  Structurally-Constrained Relationships between Cognitive States in the Human Brain , 2014, PLoS Comput. Biol..

[60]  Jonathan D. Power,et al.  Intrinsic and Task-Evoked Network Architectures of the Human Brain , 2014, Neuron.

[61]  Peter Stiers,et al.  Comparative Analysis of the Macroscale Structural Connectivity in the Macaque and Human Brain , 2014, PLoS Comput. Biol..

[62]  M. Kramer,et al.  Beyond the Connectome: The Dynome , 2014, Neuron.

[63]  Takashi Kawashima,et al.  Mapping brain activity at scale with cluster computing , 2014, Nature Methods.

[64]  D. Leopold,et al.  Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited , 2014, Proceedings of the National Academy of Sciences.

[65]  Krzysztof J. Gorgolewski,et al.  Making big data open: data sharing in neuroimaging , 2014, Nature Neuroscience.

[66]  Linda B. Smith,et al.  Developmental process emerges from extended brain–body–behavior networks , 2014, Trends in Cognitive Sciences.

[67]  R. Kerr,et al.  Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure Learning , 2014, Science.

[68]  Danielle S Bassett,et al.  Cross-linked structure of network evolution. , 2013, Chaos.

[69]  V. Calhoun,et al.  The Chronnectome: Time-Varying Connectivity Networks as the Next Frontier in fMRI Data Discovery , 2014, Neuron.

[70]  Réka Albert,et al.  Boolean modeling: a logic‐based dynamic approach for understanding signaling and regulatory networks and for making useful predictions , 2014, Wiley interdisciplinary reviews. Systems biology and medicine.

[71]  Stephen D. Larson,et al.  OpenWorm: an open-science approach to modeling Caenorhabditis elegans , 2014, Front. Comput. Neurosci..

[72]  J Anthony Movshon,et al.  Putting big data to good use in neuroscience , 2014, Nature Neuroscience.

[73]  Francesco Bullo,et al.  Controllability Metrics, Limitations and Algorithms for Complex Networks , 2013, IEEE Transactions on Control of Network Systems.

[74]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[75]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[76]  Geraint Rees,et al.  Energy landscape and dynamics of brain activity during human bistable perception , 2014, Nature Communications.

[77]  Byron M. Yu,et al.  Dimensionality reduction for large-scale neural recordings , 2014, Nature Neuroscience.

[78]  Olaf Sporns,et al.  Communication Efficiency and Congestion of Signal Traffic in Large-Scale Brain Networks , 2014, PLoS Comput. Biol..

[79]  N. Crone,et al.  Network dynamics of the brain and influence of the epileptic seizure onset zone , 2014, Proceedings of the National Academy of Sciences.

[80]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[81]  Emery N. Brown,et al.  The BRAIN Initiative: developing technology to catalyse neuroscience discovery , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[82]  Jane S. Paulsen,et al.  Network topology and functional connectivity disturbances precede the onset of Huntington's disease. , 2015, Brain : a journal of neurology.

[83]  Daniel H. Geschwind,et al.  Genetics and genomics of psychiatric disease , 2015, Science.

[84]  S. Bookheimer,et al.  Neural Signatures of Autism Spectrum Disorders: Insights into Brain Network Dynamics , 2015, Neuropsychopharmacology.

[85]  Olaf Sporns,et al.  Functional brain modules reconfigure at multiple scales across the human lifespan , 2015, 1510.08045.

[86]  Danielle S Bassett,et al.  Learning-induced autonomy of sensorimotor systems , 2014, Nature Neuroscience.

[87]  M. Rietschel,et al.  Correlated gene expression supports synchronous activity in brain networks , 2015, Science.

[88]  Misha B. Ahrens,et al.  Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy , 2015, Neuron.

[89]  Emily B. Falk,et al.  Big Data under the Microscope and Brains in Social Context , 2015 .

[90]  Danielle S. Bassett,et al.  Cognitive Network Neuroscience , 2015, Journal of Cognitive Neuroscience.

[91]  D. Geschwind,et al.  Correspondence between Resting-State Activity and Brain Gene Expression , 2015, Neuron.

[92]  O. Sporns,et al.  Connectomics-Based Analysis of Information Flow in the Drosophila Brain , 2015, Current Biology.

[93]  O. Sporns,et al.  Network morphospace , 2015, Journal of The Royal Society Interface.

[94]  H. Kennedy,et al.  A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex , 2015, Neuron.

[95]  Lucina Q. Uddin,et al.  Idiosyncratic connectivity in autism: developmental and anatomical considerations , 2015, Trends in Neurosciences.

[96]  Michelle M. McCarthy,et al.  Therapeutic mechanisms of high-frequency stimulation in Parkinson’s disease and neural restoration via loop-based reinforcement , 2015, Proceedings of the National Academy of Sciences.

[97]  O. Sporns,et al.  Architecture of the cerebral cortical association connectome underlying cognition , 2015, Proceedings of the National Academy of Sciences.

[98]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[99]  Timothy E. J. Behrens,et al.  Measuring macroscopic brain connections in vivo , 2015, Nature Neuroscience.

[100]  R. Cossart,et al.  GABAergic inhibition shapes interictal dynamics in awake epileptic mice. , 2015, Brain : a journal of neurology.

[101]  Benjamin F. Grewe,et al.  Cellular Level Brain Imaging in Behaving Mammals: An Engineering Approach , 2015, Neuron.

[102]  Jean M. Vettel,et al.  Controllability of structural brain networks , 2014, Nature Communications.

[103]  Andreas Meyer-Lindenberg,et al.  Environmental influence in the brain, human welfare and mental health , 2015, Nature Neuroscience.

[104]  D. Bassett,et al.  Dynamic reconfiguration of frontal brain networks during executive cognition in humans , 2015, Proceedings of the National Academy of Sciences.

[105]  K. Stephan,et al.  Translational Perspectives for Computational Neuroimaging , 2015, Neuron.

[106]  Emily B. Falk,et al.  Self-affirmation alters the brain’s response to health messages and subsequent behavior change , 2015, Proceedings of the National Academy of Sciences.

[107]  E. Pastalkova,et al.  Clique topology reveals intrinsic geometric structure in neural correlations , 2015, Proceedings of the National Academy of Sciences.

[108]  C. L. Rees,et al.  Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus , 2015, eLife.

[109]  E. Bullmore,et al.  Wiring cost and topological participation of the mouse brain connectome , 2015, Proceedings of the National Academy of Sciences.

[110]  Brian Litt,et al.  Virtual cortical resection reveals push-pull network control preceding seizure evolution , 2016 .

[111]  Olaf Sporns,et al.  Generative models of the human connectome , 2015, NeuroImage.

[112]  Edward T. Bullmore,et al.  Fundamentals of Brain Network Analysis , 2016 .

[113]  Ben D. Fulcher,et al.  A transcriptional signature of hub connectivity in the mouse connectome , 2016, Proceedings of the National Academy of Sciences.

[114]  Olaf Sporns,et al.  Comparative Connectomics , 2016, Trends in Cognitive Sciences.

[115]  Danielle S. Bassett,et al.  Two's company, three (or more) is a simplex - Algebraic-topological tools for understanding higher-order structure in neural data , 2016, J. Comput. Neurosci..

[116]  N. Smidt,et al.  Social relationships and cognitive decline: a systematic review and meta-analysis of longitudinal cohort studies. , 2016, International journal of epidemiology.

[117]  Alex Arenas,et al.  Mapping Multiplex Hubs in Human Functional Brain Networks , 2016, Front. Neurosci..

[118]  Justus M. Kebschull,et al.  High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA , 2016, Neuron.

[119]  Chad J. Donahue,et al.  Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey , 2016, The Journal of Neuroscience.

[120]  O. Sporns,et al.  From regions to connections and networks: new bridges between brain and behavior , 2016, Current Opinion in Neurobiology.

[121]  Janice Chen,et al.  Dynamic reconfiguration of the default mode network during narrative comprehension , 2016, Nature Communications.

[122]  Alessandro Vespignani,et al.  The social symbiome framework: Linking genes-to-global cultures in public health using network science , 2016 .

[123]  Topological analysis of the connectome of digital reconstructions of neural microcircuits , 2016, 1601.01580.

[124]  Richard F. Betzel,et al.  Modular Brain Networks. , 2016, Annual review of psychology.

[125]  Richard F. Betzel,et al.  Closures and Cavities in the Human Connectome , 2016 .

[126]  D. V. van Essen,et al.  Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates , 2016, PLoS biology.

[127]  D. Geschwind,et al.  Advancing the understanding of autism disease mechanisms through genetics , 2016, Nature Medicine.

[128]  Uri Hasson,et al.  Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[129]  Maxym Myroshnychenko,et al.  Rich-Club Organization in Effective Connectivity among Cortical Neurons , 2016, The Journal of Neuroscience.

[130]  Ginestra Bianconi,et al.  Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes. , 2016, Physical review. E.

[131]  Anthony M Zador,et al.  High-throughput mapping of single neuron projections by sequencing of barcoded RNA , 2016, bioRxiv.

[132]  Edward T. Bullmore,et al.  The Multilayer Connectome of Caenorhabditis elegans , 2016, PLoS Comput. Biol..

[133]  Danielle S. Bassett,et al.  Explicitly Linking Regional Activation and Function Connectivity: Community Structure of Weighted Networks with Continuous Annotation , 2016, 1611.07962.

[134]  Antonello Baldassarre,et al.  Normalization of network connectivity in hemispatial neglect recovery , 2016, Annals of neurology.

[135]  Thomas G. Gilgenast,et al.  Local Genome Topology Can Exhibit an Incompletely Rewired 3D-Folding State during Somatic Cell Reprogramming. , 2016, Cell stem cell.

[136]  Fabrice Wendling,et al.  Computational models of epileptiform activity , 2016, Journal of Neuroscience Methods.

[137]  Sarah Feldt Muldoon,et al.  Stimulation-Based Control of Dynamic Brain Networks , 2016, PLoS Comput. Biol..

[138]  S. Rauch,et al.  Harnessing Smartphone-Based Digital Phenotyping to Enhance Behavioral and Mental Health , 2016, Neuropsychopharmacology.

[139]  Fabio Pasqualetti,et al.  Optimally controlling the human connectome: the role of network topology , 2016, Scientific Reports.

[140]  Peter Kirsch,et al.  Social-Cognitive Deficits in Schizophrenia. , 2017, Current topics in behavioral neurosciences.

[141]  Edward T. Bullmore,et al.  Small-World Brain Networks Revisited , 2016, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[142]  Olaf Sporns,et al.  Stimulus Dependent Dynamic Reorganization of the Human Face Processing Network , 2016, Cerebral cortex.

[143]  Vito Latora,et al.  Multilayer motif analysis of brain networks. , 2016, Chaos.

[144]  Jean M. Vettel,et al.  Brain connectivity dynamics during social interaction reflect social network structure , 2017, Proceedings of the National Academy of Sciences.

[145]  Danielle S. Bassett,et al.  Classification of weighted networks through mesoscale homological features , 2015, J. Complex Networks.

[146]  Graham L. Baum,et al.  The modular organization of human anatomical brain networks: Accounting for the cost of wiring , 2016, Network Neuroscience.

[147]  Danielle S. Bassett,et al.  Evolution of brain network dynamics in neurodevelopment , 2017, Network Neuroscience.